Органических веществ уравнения химических реакций

Типы химических реакций в органической химии

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция элиминирования (отщепления)
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции конденсации и поликонденсации
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

  1. Галогенирование — присоединение молекулы галогена:
  2. Гидрогалогенирование — присоединение молекулы галогенводорода:
  3. Гидратация — присоединение молекулы воды:
  4. Полимеризация – образование высокомолекулярного соединения посредством многократного присоединения низкомолекулярного соединения, например:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования, дегидратации, дегидрогалогенирования и т.п.:

  1. Дегидрирование – отщепления молекулы водорода:
  2. Дегидратация – отщепление молекулы воды:
  3. Дегидрогалогенирования – отщепления молекулы галогеноводородов:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH2, H2O, NH3, C2H5OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R3C + , AlCl3, ZnCl2, SO3, BF3, R-Cl, R2C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения

Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

Химические реакции в органической химии

Существуют разные системы классификации органических реакций, которые основаны на различных признаках. Среди них можно выделить классификации:

по конечному результату реакции, то есть изменению в структуре субстрата;

по механизму протекания реакции, то есть по типу разрыва связей и типу реагентов.

Взаимодействующие в органической реакции вещества подразделяют на реагент и субстрат. При этом считается, что реагент атакует субстрат.

Реагент — вещество, действующее на объект — субстрат — и вызывающее в нем изменение химической связи. Реагенты делятся на радикальные, электрофильные и нуклеофильные.

Субстратом , как правило, считают молекулу, которая предоставляет атом углерода для новой связи.

В органической химии различают четыре вида реакций по конечному результату и изменению в структуре субстрата: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate — удалять, отщеплять), и перегруппировки (изомеризации). Такая классификация аналогична классификации реакций в неорганической химии по числу исходных реагентов и образующихся веществ, с изменением или без изменения состава. Классификация по конечному результату основана на формальных признаках, так как стехиометрическое уравнение, как правило, не отражает механизм реакции. Сравним типы реакций в неорганической и органической химии.

Тип реакции в неорганической химии

Пример

Тип реакции в органической химии

Присоединение по кратным связям

частный случай — этерификация

Разновидность

и пример

реакции

4. Обмен (частный случай — нейтрализация)

Pкрасн.⇔P бел.Pкрасн.⇔P бел.

п) без замены их другими.

В зависимости от того, какие атомы отщепляются — соседние CC или изолированные двумя-тремя или более атомами углерода – C –C–C– C –, – C –C–C–C– C –, могут образовываться соединения с кратными связями или циклические соединения. Отщепление галогеноводородов из алкилгалогенидов либо воды из спиртов происходит по правилу Зайцева.

Правило Зайцева : атом водорода Н отщепляется от наименее гидрогенизированного атома углерода.

Например, отщепление молекулы бромоводорода происходит от соседних атомов в присутствии щелочи, при этом образуется бромид натрия и вода.

Перегруппировка — химическая реакция, в результате которой происходит изменение взаимного расположения атомов в молекуле, перемещение кратных связей или изменение их кратности.

Перегруппировка может осуществляться с сохранением атомного состава молекулы (изомеризация) или с его изменением.

Изомеризация — частный случай реакции перегруппировки, приводящая к превращению химического соединения в изомер путем структурного изменения углеродного скелета.

Перегруппировка тоже может осуществляться по гомолитическому или гетеролитическому механизму. Молекулярные перегруппировки могут классифицироваться по разным признакам, например по насыщенности систем, по природе мигрирующей группы, по стереоспецифичности и др. Многие реакции перегруппировки имеют специфические названия — перегруппировка Кляйзена, перегруппировка Бекмана и др.

Реакции изомеризации широко используются в промышленных процессах, например при переработке нефти для повышения октанового числа бензина. Примером изомеризации является превращение н-октана в изооктан:

Разрыв связи в органических соединениях может гомолитическим и гетеролитическим.

Гомолитический разрыв связи — это такой разрыв, в результате которого каждый атом получает неспаренный электрон и образуются две частицы, имеющие сходное электронное строение — свободные радикалы .

Гомолитический разрыв характерен для неполярных или слабополярных связей, например C–C, Cl–Cl, C–H, и требует большого количества энергии.

Образующиеся радикалы, имеющие неспаренный электрон, обладают высокой реакционной способностью, поэтому химические процессы, протекающие с участием таких частиц, часто носят «цепной» характер, их трудно контролировать, а в результате реакции получается набор продуктов замещения. Так, при хлорировании метана продуктами замещения являются хлорметан CH3ClCH3Cl, дихлорметан CH2Cl2CH2Cl2, хлороформ CHCl3CHCl3 и четыреххлористый углерод CCl4CCl4. Реакции с участием свободных радикалов протекают по обменному механизму образования химических связей.

Образующиеся в ходе такого разрыва связи радикалы обуславливают радикальный механизм протекания реакции. Радикальные реакции обычно протекают при повышенных температурах или при излучении (например, свет).

В силу своей высокой реакционной способности свободные радикалы могут оказывать негативное воздействие на организм человека, разрушая клеточные мембраны, воздействуя на ДНК и вызывая преждевременное старение. Эти процессы связаны, в первую очередь, с пероксидным окислением липидов, то есть разрушением структуры полиненасыщенных кислот, образующих жир внутри клеточной мембраны.

Гетеролитический разрыв связи — это такой разрыв, при котором электронная пара остается у более электроотрицательного атома и образуются две заряженные частицы — ионы: катион (положительный) и анион (отрицательный).

В химических реакциях эти частицы выполняют функции « нуклеофилов » («фил» — от гр. любить) и « электрофилов », образуя химическую связь с партнером по реакции по донорно-акцепторному механизму. Частицы-нуклеофилы предоставляют электронную пару для образования новой связи. Другими словами,

Нуклеофил — электроноизбыточный химический реагент, способный взаимодействовать с электронодефицитными соединениями.

Примерами нуклеофилов являются любые анионы (Cl−,I−,NO−3Cl−,I−,NO3− и др.), а также соединения, имеющие неподеленную электронную пару (NH3,H2ONH3,H2O).

Таким образом, при разрыве связи могут образоваться радикалы или нуклеофилы и электрофилы. Исходя из этого выделяют три механизма протекания органических реакций.

Свободно-радикальный механизм : реакцию начинают свободные радикалы, образующиеся при гомолитическом разрыве связи в молекуле.

Наиболее типичный вариант — образование радикалов хлора или брома при УФ-облучении.

Классификация химических реакций в неорганической и органической химии

Теория к заданию 19 из ЕГЭ по химии

Классификация химических реакций в неорганической и органической химии

Химические реакции, или химические явления, — это процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и (или) строению.

При химических реакциях обязательно происходит изменение веществ, при котором рвутся старые и образуются новые связи между атомами.

Химические реакции следует отличать от ядерных реакций. В результате химической реакции общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции — процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например, превращение алюминия в магний:

Классификация химических реакций многопланова, т.е. в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.

Рассмотрим классификацию химических реакций по различным признакам.

Классификация химических реакций по числу и составу реагирующих веществ. Реакции, идущие без изменения состава вещества

В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:

В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:

1. Изомеризация алканов.

Реакция изомеризации алканов имеет большое практическое значение, т.к. углеводороды изостроения обладают меньшей способностью к детонации.

2. Изомеризация алкенов.

3. Изомеризация алкинов (реакция А. Е. Фаворского).

4. Изомеризация галогеналканов (А. Е. Фаворский).

5. Изомеризация цианата аммония при нагревании.

Впервые мочевина была синтезирована Ф. Велером в 1882 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.

1. Реакции соединения — это такие реакции, при которых из двух и более веществ образуется одно сложное вещество.

В неорганической химии все многообразие реакций соединения можно рассмотреть на примере реакций получения серной кислоты из серы:

1) получение оксида серы (IV):

$S+O_2=SO_2$ — из двух простых веществ образуется одно сложное;

2) получение оксида серы (VI):

$2SO_2+O_2<⇄>↖2SO_3$ — из простого и сложного веществ образуется одно сложное;

3) получение серной кислоты:

$SO_3+H_2O=H_2SO_4$ — из двух сложных веществ образуется одно сложное.

Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:

В органической химии реакции соединения принято называть реакциями присоединения. Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:

1) реакция гидрирования — присоединение водорода:

2) реакция гидратации — присоединение воды:

3) реакция полимеризации:

2. Реакции разложения — это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.

В неорганической химии все многообразие таких реакций можно рассмотреть на примере блока реакций получения кислорода лабораторными способами:

1) разложение оксида ртути (II):

$2HgO<→>↖2Hg+O_2↑$ — из одного сложного вещества образуются два простых;

2) разложение нитрата калия:

$2KNO_3<→>↖2KNO_2+O_2↑$ — из одного сложного вещества образуются одно простое и одно сложное;

3) разложение перманганата калия:

$2KMnO_4<→>↖K_2MnO_4+MnO_2+O_2↑$ — из одного сложного вещества образуются два сложных и одно простое, т.е. три новых вещества.

В органической химии реакции разложения можно рассмотреть на примере блока реакций получения этилена в лаборатории и промышленности:

1) реакция дегидратации (отщепления воды) этанола:

2) реакция дегидрирования (отщепления водорода) этана:

3) реакция крекинга (расщепления) пропана:

3. Реакции замещения — это такие реакции, в результате которых атомы простого вещества замещают атомы какого-либо элемента в сложном веществе.

В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:

1) взаимодействие щелочных и щелочноземельных металлов с водой:

2) взаимодействие металлов с кислотами в растворе:

3) взаимодействие металлов с солями в растворе:

Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, — способность его атомов водорода замещаться на атомы галогена:

Другой пример — бромирование ароматического соединения (бензола, толуола, анилина):

Обратим внимание на особенность реакций замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещества, как в неорганической химии, а два сложных вещества.

В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например, нитрование бензола:

Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.

4. Реакции обмена — это такие реакции, при которых два сложных вещества обмениваются своими составными частями.

Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, т.е. только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, $Н_2О$).

В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:

1) реакция нейтрализации, идущая с образованием соли и воды:

или в ионном виде:

2) реакция между щелочью и солью, идущая с образованием газа:

или в ионном виде:

3) реакция между щелочью и солью, идущая с образованием осадка:

или в ионном виде:

В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:

1) реакция, идущая с образованием слабого электролита — $H_2O$:

2) реакция, идущая с образованием газа:

3) реакция, идущая с образованием осадка:

Классификация химических реакций по изменению степеней окисления химических элементов, образующих вещества

Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

Как вы помните, сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса:

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов:

1. Альдегиды восстанавливаются в соответствующие спирты:

2. Альдегиды окисляются в соответствующие кислоты:

Реакции, идущие без изменения степеней окисления химических элементов.

К ним, например, относятся все реакции ионного обмена, а также:

  • многие реакции соединения:
  • многие реакции разложения:

Классификация химических реакций по тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.

Эти реакции протекают с выделением энергии.

К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота (II) из азота и кислорода и реакция газообразного водорода с твердым иодом:

Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения, например:

Гидрирование этилена — пример экзотермической реакции:

Она идет при комнатной температуре.

Эндотермические реакции

Эти реакции протекают с поглощением энергии.

Очевидно, что к ним относятся почти все реакции разложения, например:

а) обжиг известняка:

б) крекинг бутана:

Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением, например:

Классификация химических реакций по агрегатному состоянию реагирующих веществ (фазовому составу)

Это реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах):

Это реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе):

Классификация химических реакций по участию катализатора

Некаталитические реакции идут без участия катализатора:

Каталитические реакции идут с участием катализатора:

Так как все биологические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы — ферментов, все они относятся к каталитическим или, точнее, ферментативным.

Следует отметить, что более $70%$ химических производств используют катализаторы.

Классификация химических реакций по направлению

Необратимые реакции протекают в данных условиях только в од ном направлении.

К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды), и все реакции горения.

Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях.

Таких реакций подавляющее большинство.

В органической химии признак обратимости отражают названия-антонимы процессов:

  • гедрирование — дегидрирование;
  • гидратация — дегидратация;
  • полимеризация — деполимеризация.

Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость лежит в основе важнейшего процесса в живом организме — обмена веществ.


источники:

http://www.sites.google.com/site/abrosimovachemy/materialy-v-pomos-ucenikam/distancionnoe-obucenie/10-klass/himiceskie-reakcii-v-organiceskoj-himii

http://examer.ru/ege_po_himii/teoriya/klassifikaciya_ximicheskix_reakcij_v