Ошибки при решении уравнений в начальной школе

Работа над уравнениями в начальной школе
методическая разработка на тему

Методическая разработка «Работа над уравнениями в начальной школе» поможет учителям начальных классов в работе над уравнениями. Здесь же прилагаются алгоритмы по решению уравнений разного вида.

Скачать:

ВложениеРазмер
rabota_nad_uravneniyami_v_nachalnoy_shkole.doc80.5 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа N135″ имени академика Б.В.Литвинова»

Работа над уравнениями в начальной школе.

Подготовила учитель начальных классов:

Самойлова Анжелика Владимировна

Работа над уравнениями в начальной школе.

Большую трудность для младшего школьного возраста представляет умение решать уравнения. Изучение уравнений в начальной школе носит пропедевтический характер. Поэтому очень важно подготовить детей в начальной школе к более глубокому изучению уравнений в старших классах. В начальной школе в процессе работы над уравнением закрепляются правила о взаимосвязи части и целого, сторон прямоугольника с его площадью, формируются вычислительные навыки и понимание связи между компонентами действий, закрепляется порядок действий и формируется умения решать текстовые задачи, идет работа над развитием правильной математической речи. На уроках закрепления уравнения позволяют разнообразить виды заданий.

Изучение уравнений начинается с подготовительного этапа уже в 1 классе, когда дети, действуя с предметами, решают такие «задачи»:

Затем учащиеся переходят к действиям над числами и выполняют задания, связанные с нахождением неизвестного числа в «окошке», например:

Дети находят число либо подбором, либо на основе знаний состава числа. На данном этапе учителю необходимо включать в устные упражнения следующие задания:

— Сколько надо вычесть из 3, чтобы получилось 2?

— Сколько надо прибавить к 2, чтобы получилось 4?

На втором этапе учащиеся знакомятся с понятиями «уравнение» и «корень уравнения». На протяжении нескольких уроков дети учатся решать уравнения с неизвестным слагаемым, уменьшаемым, вычитаемым. Названия компонентов арифметических действий были введены в речевую практику учащихся и использовались для чтения равенств и выражений, пока правило нахождения неизвестного компонента в уравнениях не заучивается. Уравнения решаются на основе взаимосвязи между частью и целым. При изучении данной темы дети должны научиться находить в уравнениях компоненты,

соответствующие целому (сумма, уменьшаемое), и компоненты, соответствующие его частям (слагаемое, уменьшаемое, разность). При решении уравнений детям нужно будет вспомнить лишь два известных правила:

— Целое равно сумме частей.

— Чтобы найти часть, надо из целого вычесть другую часть.

Эту работу облегчает графическое обозначение части ______ и целого , а также понимание того, что целое – это большее число.

Для того чтобы облегчить работу над формированием навыка решения уравнений, можно проводить в классе следующую работу.

  1. Составление и решение уравнений по схеме.

2. Составление и решение уравнений с помощью модели числа.

— Замените модели числами:

3. Уравнения с буквами.

— Как из волка получить вола ?

4. Составление и решение уравнений с помощью числового луча.

5. Выполни проверку и найди ошибку.

Дети решают: 24 + 8 = 16

6.Составиьуравнения с числами Х, 4, 10 и реши их.

Х + 4 = 10; 10 – Х = 4; Х – 10 = 4 и т.п.

7. Из данных уравнений реши те, где Х находится сложением.

Х +16 = 20; Х -18 = 30; 29 – Х = 19

8. Рассмотри решение уравнения и вставь соответствующий знак.

К концу изучения темы дети учатся комментировать уравнения через компоненты действий. Работа строится следующим образом:

1) читаю уравнение;

2) нахожу известные и неизвестные компоненты (части и целое);

3) применяю правило (по нахождению части или целого);

4) нахожу, чему равен Х;

5) комментирую через компоненты действий.

Следующий этап – решение уравнений вида: а ∙ Х = в; а : Х = в; Х : а = в .

Уравнения этого вида решаются на основе взаимосвязи между площадью прямоугольника и его сторонами. Поэтому изменяется и графическое обозначение компонентов уравнения:

— площадь прямоугольника, а _____ — его стороны. Здесь важно понять то, что обучение решению и комментированию уравнений ведется по определенной схеме:

1 этап: Решение с одновременным комментированием правил нахождения площади и его сторон. Например, Х : 2 = 5 ( Х – площадь прямоугольника, 2 и 5 – его стороны).

Х = 2 ∙ 5 (чтобы найти площадь прямоугольника, надо перемножить его стороны)

2 этап: Решение уравнений с комментированием(через площадь прямоугольника и его стороны).

Комментирование через компоненты действий после решения уравнения.

Для отработки навыков решения уравнений на умножение и деление можно использовать следующие упражнения.

1. Выполни проверку и найди ошибку.

Дети решают: 2 : 2 = 4

2. Проанализируй решение уравнения и найди ошибку.

Ошибки: 1) 9 – это площадь, на целое, ее надо обозначить прямоугольником;

2) Х – это сторона, надо площадь разделить на другую сторону.

3. Составь уравнения с числами 3, Х, 12 и реши их.

Дети составляют: 12 : Х = 3; 3 ∙ Х = 12 и т.п.

4. Изданных уравнений реши те, которые решаются делением.

Х ∙ 2 = 6; Х : 4 = 16; 12 : Х = 4

5. Рассмотри решение уравнений и вставь соответствующий знак в запись уравнения.

6. Составь и реши уравнение:

— Какое число надо умножить на пять, чтобы получилось 25?

Х ∙ 3 = 15; Х : 4 = 5; 16 : Х = 2

— Какое уравнение лишнее? Объясни свой выбор.

— первое уравнение – Х равен нечетному числу;

— второе уравнение – Х находим умножением;

— третье уравнение – неизвестен второй компонент и т.п.

Последний этап при работе с уравнениями в начальной школе – знакомство учащихся с составными уравнениями. Решение таких уравнений строится на качественном анализе выражения, стоящего в левой части уравнения: какие действия указаны в выражении, какое действие выполняется последним, как читается запись этого выражения, какому компоненту этого действия принадлежит неизвестное число и т.п. К этому времени учащиеся должны твердо овладеть следующими умениями:

— решение простых уравнений,

— анализ решений уравнений по компонентам действий,

— чтение записи выражений в два – три действия,

— порядок выполнения действий в выражениях со скобками и без них.

На данном этапе дети должны понимать, что в записи уравнений в качестве неизвестного числа могут использоваться различные буквы латинского алфавита, например: К + 4 = 3; Р – 3 = 8; Z : 7 = 6 и т.п.

Запись решения уравнений сопровождается словесным описанием выполняемых действий. Для выработки правильной математической речи и навыков решения первых уравнений данного вида необходимо использовать таблицы с образцами решений. Но так как дети уже с 1-го класса знакомы с записью различных алгоритмов, то можно использовать только алгоритм решения уравнений, по которому дети и анализируют уравнения.

Как решать уравнения: от простого к сложному 2-4 класс

Уравнение — равенство, содержащее букву латинского алфавита, значение которой нужно найти.

Решить уравнение — значит подобрать такое число, при котором равенство становится верным.

Любые уравнения решаются на основе зависимости между компонентами. Простые уравнения учащиеся начальной школы начинают решать уже 2 классе. По мере взросления, усложняются и уравнения, переходя от простых к сложным уравнениям в 4 классе начальной школы.

Простые уравнения во 2 классе решают на основе взаимосвязей между компонентами при сложении или вы­читании. Важно соблюдать алгоритм решения уравнения.

Решение уравнения

Объяснение

чтобы найти первое сла­гаемое, нужно из сум­мы вычесть второе сла­гаемое.

Вычисляю: 35 — 7 = 28

Проверяю: 28 + 7 = 35

чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.

Вычисляю: 20 + 13 = 33

Проверяю: 33 — 13 = 20

чтобы найти вычитаемое, нужно из уменьшаемого вычесть раз­ность

Вычисляю: 46 — 42 = 4

Проверяю: 46 — 4 = 42

Простые уравнения вида х • 6 = 72, х : 8 = 12, 64 : х = 16 решают на основе взаимосвязей между результатами и компонентами действий.

Решение уравнения

Объяснение

1) Читаю уравнение: произ­ведение х и 6 равно 72.

2) Вспоминаю правило: что­бы найти неизвестный множитель, надо произведение разделить на известный множитель.

3) Вычисляю: х = 72 : 6

4) Проверяю: 12 • 6 = 72

1) Читаю уравнение: частное х и 8 равно 12.

2) Вспоминаю правило: чтобы найти неизвестное делимое, надо частное умножить на делитель.

3) Вычисляю: х = 12 • 8

4) Проверяю: 96 : 8 = 12

1) Читаю уравнение: частное 64 и х равно 16.

2) Вспоминаю правило: чтобы найти неизвестный делитель, надо делимое разде­лить на частное.

3) Вычисляю: х = 64 : 16

4) Проверяю: 64 : 4 = 16

Сложные уравнения в начальной школе состоят из нескольких арифметических действий. Алгоритм решения заключается в превращение сложного уравнения в простое.

Уравнения на нахождение неизвестного слагаемого

1)Вычисляю значение выражения в правой части уравнения: 12 • 4 = 48.

2) В уравнении х + 13 = 48 неизвестно первое слагаемое.

3) Вспоминаю правило: чтобы найти неизвест­ное слагаемое, нужно из суммы вычесть из­вестное слагаемое.

4) Вычисляю: х = 48 — 13

5) Проверяю: 35 + 13 = 12 • 4

Уравнения на нахождение неизвестного уменьшаемого

1) Вычисляю значение выражения в правой части уравнения: 51 : 17 = 3.

2) В уравнении х — 24 = 3 неизвестно умень­шаемое.

3) Вспоминаю правило: чтобы найти неизвест­ное уменьшаемое, нужно к разности приба­вить вычитаемое.

4) Вычисляю: х = 24 + 3

5) Проверяю: 27 — 24 = 51 : 17

Уравнения на нахождение неизвестного вычитаемого

640 — х = 180 + 120

640 — 340 = 180 + 120

1) Вычисляю значение выражения в правой части уравнения: 180 + 120 = 300.

2) В уравнении 640 – х = 300 неизвестно вычи­таемое.

3) Вспоминаю правило: чтобы найти вычитаемое, нужно из уменьшаемого вычесть раз­ность.

4) Вычисляю: х = 649 – 300

5) Проверяю: 640 — 340 = 180+120

Уравнения на нахождение неизвестного множителя

5 • 77 = 131 + 254

1) Вычисляю значение выражения в правой части уравнения: 131 + 254 = 385.

2) В уравнении 5 • х = 385 неизвестен второй множитель.

3) Вспоминаю правило: чтобы найти неизвест­ный множитель, нужно произведение разделить на известный множитель.

4) Вычисляю: х = 385 : 5

5) Проверяю: 5 • 77 = 131 + 254

Уравнения на нахождение неизвестного делимого

64 000 : 8 = 800 • 10

1) Вычисляю значение выражения в правой части.

2) Вспоминаю правило: чтобы найти делимое, нужно частное умножить на делитель.

Уравнения на нахождение неизвестного делителя

1) Вычисляю значение выражения вправой части.

2) Вспоминаю правило: чтобы найти неизвестный делитель, нужно делимоеразделить на частное.

Как решать сложные уравнения в 4 классе подробно рассмотрено в статье по ссылке.

Статья. Проблемы, типичные ошибки учащихся, допускаемые при решении уравнений и неравенств.

Задание «Проблемы, типичные ошибки учащихся»

Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.

Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики порой не могут объяснить, чем вызваны эти ошибки.

Решая уравнения и неравенства учащиеся допускают типичные ошибки:

· Незнание правил, определений, формул.

· Непонимание правил, определений, формул.

· Неумение применять правила, определения, формулы.

· Неверное применение формул.

· Невнимательное чтение условия и вопроса задания.

· Раскрытие скобок и применение формул сокращенного умножения.

Какие же проблемы, трудности общего характера возникают у учащихся при изучении математики ( их несомненно можно отнести и к трудностям, которые возникают у уч-ся при изучении темы «Уравнения и неравенства»):

· Пропуски занятий приводят к незнанию материала, пробелам в знаниях.

· Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.

· Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .

· Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам . Учащиеся не всегда сами понимают, что именно они написали.

· Усталость . Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.

· Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.

· Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.

· Мотивация. Следствие низкой мотивации – потеря внимания и ошибка.

Ошибки, допускаемые обучающимися при решении уравнений и неравенств, самые разнообразные: от неверного оформления решения до ошибок логического характера.

1. Самая типичная ошибка состоит в том, что учащиеся при решении уравнений и неравенств без дополнительных пояснений используют преобразования, нарушающие равносильность, что приводит к потере корней и появлению посторонних корней.

Предлагаю на конкретных примерах рассмотреть ошибки подобного рода и определить способы их предупреждения и исправления, но прежде всего хочу обратить внимание на следующую мысль: не надо бояться приобрести посторонние корни, их можно отбросить путем проверки ,надо бояться потерять корни.

а) Решить уравнение:

log3(5 – x) = 3 – log3(–1 – x).

Это уравнение учащиеся очень часто решают следующим образом.

log3(5 – x) = 3 – log3(–1 – x), log3(5 – x) + log3(–1 – x) = 3, log3((5 – x)( –1 – x)) = 3, (5 – x)( –1 – x) = 33, x2 – 4x – 32 = 0,

Учащиеся часто, не проводя дополнительных рассуждений, записывают оба числа в ответ. Но как показывает проверка, число x = 8 не является корнем исходного уравнения, так как при x = 8 левая и правая части уравнения теряют смысл. Проверка показывает, что число x = –4 является корнем заданного уравнения.

б) Решить уравнение

Область определения исходного уравнения задается системой

Для решения заданного уравнения перейдем к логарифму по основанию x, получим

Мы видим, что левая и правая части этого последнего уравнения при x = 1 не определены, но это число является корнем исходного уравнения (убедиться в этом можно путем непосредственной подстановки). Таким образом, формальный переход к новому основанию привел к потере корня. Чтобы избежать потери корня x = 1, следует указать, что новое основание должно быть положительным числом, отличным от единицы, и рассмотреть отдельно случай x = 1.

2. Целая группа ошибок, вернее сказать недочетов, состоит в том, что учащиеся не уделяют должного внимания нахождению области определения уравнений, хотя именно она в ряде случаев есть ключ к решению.

3. Типичной ошибкой учащихся является то, что они не владеют на нужном уровне определениями понятий, формулами, формулировками теорем, алгоритмами. Хочу подтвердить сказанное следующим примером.

Ученик предлагает следующее ошибочное решение этого уравнения:

х = –2.

Поверка показывает, что х = –2 не является корнем исходного уравнения.

Напрашивается вывод, что заданное уравнение корней не имеет.

Однако это не так. Выполнив подстановку х = –4 в заданное уравнение, мы можем убедиться, что это корень.

Предлагаю проанализировать, почему произошла потеря корня.

В исходном уравнении выражения х и х + 3 могут быть одновременно оба отрицательными или оба положительными, но при переходе к уравнению эти же выражения могут быть только положительными. Следовательно, произошло сужение области определения, что и привело к потере корней.

Чтобы избежать потери корня, можно поступить следующим образом: перейти в исходном уравнении от логарифма суммы к логарифму произведения. Возможно в этом случае появление посторонних корней, но от них, путем подстановки, можно освободиться.

4. Многие ошибки, допускаемые при решении уравнений и неравенств, являются следствием того, что учащиеся очень часто пытаются решать задачи по шаблону, то есть привычным путем. Предлагаю рассмотреть это на следующем примере.

Попытка решать это неравенство привычными алгоритмическими способами не приведет к ответу. Решение здесь должно состоять в оценке значений каждого слагаемого левой части неравенства на области определения неравенства.

Найдем область определения неравенства:

Для всех x из промежутка (9;10] выражение имеет положительные значения (значения показательной функции всегда положительны).

Для всех x из промежутка (9;10] выражение ( x – 9) имеет положительные значения, а выражение lg(x – 9) имеет значения отрицательные или ноль, тогда выражение

– (x – 9) lg(x – 9) положительно или равно нулю.

Окончательно имеем x ∈ (9;10]. Хочу заметить, что при таких значениях переменной каждое слагаемое, стоящее в левой части неравенства, положительно (второе слагаемое может быть равно нулю), а значит их сумма всегда больше нуля. Следовательно, решением исходного неравенства является промежуток (9;10].

5. Одна из ошибок связана с графическим решением уравнений.

Некоторые учащиеся, решая это уравнение графически (хочу отметить, что его другими элементарными способами решить нельзя), получают лишь один корень (он является абсциссой точки, лежащей на прямой y = x), ибо графики функций

и

это графики взаимно обратных функций.

На самом деле исходное уравнение имеет три корня: один из них является абсциссой точки, лежащей на биссектрисе первого координатного угла y = x, другой корень и третий корень Убедиться в справедливости сказанного можно непосредственной подстановкой чисел и в заданное уравнение.

Этот пример удачно иллюстрирует следующий вывод: графическое решение уравнения f(x) = g(x) “безупречно”, если обе функции «разномонотонны» (одна из них возрастает, а другая – убывает), и недостаточно математически корректно в случае одномонотонных функций (обе либо одновременно убывают, либо одновременно возрастают).

6. Ряд типичных ошибок связан с тем, что учащиеся не совсем корректно решают уравнения и неравенства на основе функционального подхода. Остановлюсь на типичных ошибки такого рода.

а) Решить уравнение x х = x.

Функция, стоящая в левой части уравнения, – показательно-степенная и раз так, то на основание степени следует наложить такие ограничения: x > 0, x ≠ 1. Прологарифмируем обе части заданного уравнения:

или

Откуда имеем x = 1.

Логарифмирование не привело к сужению области определения исходного уравнения. Но тем не менее произошла потеря двух корней уравнения; непосредственным усмотрением мы находим, что x = 1 и x = –1 являются корнями исходного уравнения.

7. При решении неравенств с помощью подстановки мы всегда сначала решаем новое неравенство относительно новой переменной, и лишь в его решении делаем переход к старой переменной.

Школьники очень часто ошибочно делают обратный переход раньше.Этого делать не следует.

8.Хочу привести пример еще одной ошибки, связанной с решением неравенств.

.

Привожу ошибочное решение, которое очень часто предлагают учащиеся.

Возведем обе части исходного неравенства в квадрат. Будем иметь:

,

откуда получаем неверное числовое неравенство , что позволяет сделать вывод: заданное неравенство не имеет решений.

Однако полученный вывод неверен, например, при х = 1000 имеем

, , .

Полученное числовое неравенство верно, а значит х = 1000 является решением.

Значит, заданное неравенство имеет решение, и, следовательно, приведенное выше решение ошибочно.

Привожу правильное решение. Найдем область определения исходного неравенства. Она задается системой

или

откуда .

Ясно, что на интервале (10;1000) нет решений, ибо левая часть заданного неравенства при любом х из этого интервала не имеет смысла.

Рассмотрим два случая.

а) , откуда х > 100. С учетом области определения исходного неравенства имеем промежуток . Для всех х из этого промежутка левая часть исходного неравенства неотрицательна (как значение арифметического квадратного корня), а правая часть – отрицательна. Делаем вывод о том, что – решение заданного неравенства.

б) , откуда . С учетом области определения исходного неравенства имеем промежуток . Для всех х из промежутка имеют смысл обе части неравенства и они имеют неотрицательные значения, значит обе части заданного неравенства мы можем возвести в квадрат. Будем иметь: , откуда . Это неверное числовое неравенство позволяет сделать вывод: значения х из промежутка решениями исходного неравенства не являются.

Ответ: .

9. Типичная ошибка при решении уравнений, неравенств и их систем состоит в том, что неверно преобразовываются выражения.

Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.

Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.

Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.

Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x .

Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.

Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.

Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.

Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей:

а) умения обнаружить ошибку;

б) умения её объяснить и исправить.

В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:

· проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;

· проверка правильности решения задач путём составления и решения задач, обратных к данной;

· оценка результата решения задачи с точки зрения здравого смысла;

· проверка аналитического решения графическим способом.

Способы исправления и предупреждения ошибок

Свести ошибки к минимуму способствуют следующие профилактические меры:

  • Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
  • Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
  • При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
  • Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
  • Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.

Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.


источники:

http://koncpekt.ru/nachalnye-klassy/raznoe/4057-kak-reshat-uravneniya-ot-prostogo-k-slozhnomu-2-4-klass.html

http://znanio.ru/media/statya_problemy_tipichnye_oshibki_uchaschihsya_dopuskaemye_pri_reshenii_uravnenij_i_neravenstv-173622