Основная теорема зацепления выражается уравнением

Детали машин

Основы теории зубчатого зацепления

Основная теорема зацепления

Профили зубьев колес должны быть сопряженными, т. е. заданному профилю зуба одного колеса должен соответствовать вполне определенный профиль зуба другого колеса.
Чтобы выяснить, какова должна быть форма профиля зубьев пары колес, чтобы зацепление обеспечивало требуемое постоянство передаточного отношения, рассмотрим два зуба С и D , принадлежащих шестерне и колесу передачи и соприкасающихся в точке S (см. рисунок 2).

С – ведущее колесо с центром вращения О1 , а D – ведомое колесо с центром вращения в точке О2 . Расстояние aw между центрами О1 и О2 неизменно.
Зуб шестерни, вращаясь с угловой скоростью ω1 , оказывает давление на зуб колеса, сообщая ему угловую скорость ω2 .

Проведем через точку S общую для обоих профилей касательную ТТ и нормаль NN .
Очевидно, что окружные скорости точки касания зубьев S относительно центров вращения О1 и О2 будут равны:

Разложим скорости v1 и v2 на составляющие v’1 и v’2 по направлению нормали NN и составляющие v»1 и v»2 по направлению к касательной ТТ .
Для обеспечения постоянного касания профилей необходимо соблюдение условия v’1 = v’2 , иначе, если скорость точки касания на зубе шестерни будет меньше скорости точки касания на зубе колеса (т. е. v’1 ) , то зуб шестерни отстанет от зуба колеса, если же точка касания на зубе шестерни будет больше точки касания на зубе колеса ( v’1 > v’2 ), произойдет врезание зубьев.

Опустим из центров О1 и О2 перпендикуляры О1В и О2С на нормаль NN .
Поскольку треугольники aeS и BSO1 подобны, можно записать:

Из подобия треугольников afS и CSO2 следует:

Нормаль NN пересекает линию центров О1О2 в точке П , называемой полюсом зацепления .
Из подобия треугольников О2ПС и О1ПВ следует:

Сравнивая соотношения (1) и (2), получим:

Это соотношение выражает основную теорему зацепления, которая может быть сформулирована следующим образом:
Для обеспечения постоянного передаточного числа зубчатых колес профили их зубьев должны быть очерчены по кривым, у которых общая нормаль NN , проведенная через точку касания профилей, делит расстояние между центрами О1О2 на части, обратно пропорциональные угловым скоростям.

Полюс зацепления П сохраняет неизменное положение на линии центров О1О2 , поэтому радиусы rw2 и rw1 также неизменны. Окружности радиусов rw1 и rw2 называют начальными .
При вращении зубчатых колес начальные окружности перекатываются друг по другу без скольжения, о чем свидетельствует равенство скоростей ω1 rw1 и ω2 rw2 , полученное из формулы (3).

Из множества кривых, удовлетворяющих требованиям основной теории зацепления, практическое применение в современном машиностроении получила эвольвента окружности, которая обладает следующими свойствами:

  • позволяет получить сравнительно точно и просто профиль зуба в процессе нарезания;
  • без нарушения правильности зацепления допускает некоторое изменение межосевого расстояния aw, которое может появиться в результате неточностей изготовления и сборки, деформации деталей передачи при работе;
  • обеспечивает высокую точность и долговечность зубьев, малые скорости скольжения точек контакта на поверхности зацепляющихся зубьев и высокий КПД.

Эвольвента окружности и ее свойства

Эвольвентой окружности называют плоскую кривую переменной кривизны, которую описывает точка S прямой NN , перекатываемой без скольжения по окружности радиуса rb . Эту окружность называют эволютой или основной окружностью, а перекатываемую кривую NN – производящей прямой.

Характер зубчатого зацепления определяется свойствами эвольвенты:

  • Производящая прямая NN является одновременно касательной к основной окружности и нормалью ко всем производимым ею эвольвентам.
  • Две эвольвенты одной и той же основной окружности эквидистантны (т. е. расстояние между эвольвентами в направлении нормали везде одинаковое).
  • С увеличением радиуса основной окружности эвольвента становится более пологой и при стремлении радиуса к бесконечности эвольвента обращается в прямую линию.
  • Радиус кривизны эвольвенты в точке S2 равен длине дуги S0B основной окружности. Центр кривизны эвольвенты в данной точке находится на основной окружности.

Основная теорема зацепления выражается уравнением

Два твердых тела (звена), соприкасающиеся своими поверхностями и имеющие возможность двигаться относительно друг друга, образуют кинематическую пару. Кинематическая пара допускает не любое движение звеньев относительно друг друга, а только такое движение, которое согласуется с характером соприкосновения и с формой соприкасающихся поверхностей.

Если звенья, образующие КП, в силу характера их соприкосновения, могут совершать только простейшие движения относительно друг друга ( вращательное, прямолинейное поступательное или, в общем случае, винтовое ), то пара является низшей . Низшая пара — пара, в которой требуемое относительное движение звеньев обеспечивается соприкасанием ее элементов по поверхности ( фактическое соприкасание звеньев в низшей паре возможно как по поверхности, так и по линиям и точкам ). В таких парах движение одного звена относительно другого представляет собой чистое скольжение, причем может иметь место поверхностный контакт — соприкасание звеньев по плоскости, цилиндрической или винтовой поверхности. Такая поверхность контакта может двигаться, «как бы оставаясь в самой себе».

Более сложные относительные движения можно реализовать в парах, характер соприкасания звеньев в которых допускает не только относительное скольжение, но и перекатывание. Такие пары называются высшими. Высшая пара — пара, в которой требуемое относительное движение звеньев может быть получено только соприкасанием звеньев по линиям или в точках. В высшей паре поверхностный контакт невозможен, так как он исключает возможность перекатывания тел. Если контакт в высшей КП происходит по линии, то она называется мгновенной контактной линией. Эта линия может быть прямой или кривой, при движении соприкасающихся тел она не только меняет свое положение по отношению к звеньям и к неподвижному пространству, но может менять и свою форму. Двигаясь относительно каждого из соприкасающихся звеньев, эта линия как бы «покрывает», описывает или формирует его поверхность. То есть поверхность каждого из звеньев пары можно рассматривать как геометрическое место мгновенных контактных линий в системе координат, связанной со звеном. В неподвижном пространстве эти линии описывают поверхность зацепления — геометрическое место мгновенных контактных линий в неподвижной системе координат. Очевидно, что мгновенная контактная линия — линия пересечения поверхности зацепления с любой из двух соприкасающихся поверхностей. При точечном контакте, контактная точка в системах координат связанных со звеньями описывает некоторую контактную линию на контактирующей поверхности, в неподвижной системе координат — линию зацепления.

Как следует из вышеизложенного, характер относительного движения звеньев КП и геометрия их контактирующих поверхностей находятся в тесной взаимосвязи. Изучение геометрии контактирующих поверхностей в связи с их относительным движением составляет предмет раздела прикладной механики, который называется теорией зацепления [ 1, 2 ].

Механизмы с высшими кинематическими парами и их классификация.

К механизмам с высшими КП относятся любые механизмы в состав которых входит хотя бы одна высшая пара. Простейший типовой механизм с высшей парой состоит из двух подвижных звеньев, образующих между собой высшую кинематическую пару, а со стойкой низшие ( вращательные или поступательные ) пары. К простейшим механизмам с высшей парой относятся :

  • фрикционные передачи (рис. 11.3),
  • зубчатые передачи (рис. 11.2),
  • кулачковые механизмы (рис. 11.1),
  • поводковые механизмы (в том числе и мальтийские — рис. 11.4).

Структурные схемы простейших механизмов с высшими КП..

Фрикционными механизмами или передачами сцепления называются механизмы с высшей парой в которых передача движения в высшей паре осуществляется за счет сил сцепления или трения в зоне контакта. Кулачковым механизмом называется механизм с высшей парой, ведущее звено которого выполнено в форме замкнутой криволинейной поверхности и называется кулачком (или кулаком). Зубчатыми механизмами называются механизмы звенья которых снабжены зубьями (зубчатый механизм можно определить как многократный кулачковый, рассматривая зацепление каждой пары зубьев, как зацепление двух кулачков) . Рабочие поверхности зубьев должны быть выполнены так, чтобы обеспечивать передачу и преобразование движения по заданному закону за счет их зацепления . Условия, которым должны удовлетворять рабочие поверхности высших пар, формулируются в разделе теории механизмов — теории зацепления или теории высшей пары.

Основы теории высшей кинематической пары.

Основная теорема зацепления.

Понятие о полюсе и центроидах. Рассмотрим два твердых тела i и j , которые совершают друг по отношению к другу плоское движение. Свяжем с телом i систему координат 0 i x i y i , а с телом j систему координат 0 j x j y j . Плоское движение тела i относительно тела j в рассматриваемый момент эквивалентно вращению вокруг мгновенного центра скоростей или полюса P . Тогда геометрическое место полюсов относительного вращения в системе координат 0 i x i y i называется подвижной Ц i , а в системе координат 0 j x j y j неподвижной Ц j центроидой. В процессе рассматриваемого движения цетроиды контактируют друг с другом в полюсах относительного вращения и поэтому перекатываются друг по другу без скольжения, т.е.

V Pi = V Pj ; V PiPj = 0 ;

тогда дуга S wi равна дуге S wj .

Полюс зацепления — мгновенный центр относительного вращения звеньев, образующих кинематическую пару.

Центроида (полоида) — геометрическое место центров (полюсов) относительного вращения в системах координат, связанных со звеньями.

Передаточное отношение для тел совершающих вращательное движение.

Рассмотрим два тела 1 и 2 , совершающих вращательное движение соответственно вокруг центров 0 1 и 0 2 с угловыми скоростями w 1 и w 2 (рис. 11.6). Причем нам неизвестно связаны эти тела между собой или нет. Как отмечено выше, полюс относительного вращения этих тел будет лежать в такой общей точке этих тел , где вектора скоростей как первого, так и второго тела будут равны. Для скоростей любой точки первого тела V A = w 1 Ч l A01 , для любой точки второго — V В = w 2 Ч l В 02 . Равенство векторов скоростей по направлению для тел, совершающих вращательное движение, возможно только на линии соединяющей центры вращения тел. Поэтому полюс относительного вращения должен лежать на этой линии . Для определения положения полюса на линии центров составим следующее уравнение

Таким образом, полюс относительного вращения звеньев лежит на линии центров и делит ее на отрезки обратно пропорциональные угловым скоростям.

Теорема Виллиса. Передаточное отношение между звеньями совершающими вращательное движение прямопропорционально отношению угловых скоростей и обратно пропорционально отношению расстояний от центров вращения до полюса.

Знак перед отношением показывает внешним (знак +, зацепление внутреннее) или внутренним (знак — , зацепление внешнее) образом делит полюс линию центров на отрезки r w1 = l 01P и r w2 = l 02P . Данная формула получена из рассмотрения вращательного движения двух тел, при этом тела могут быть и не связаны между собой.

Воспользуемся методом обращенного движения и рассмотрим движение нашей системы относительно звена 1. Для этого к скоростям всех звеньев механизма добавим — w 1 . Тогда скорости звеньев изменятся следующим образом:

Движение механизма:Звено 1Звено 2Звено 0
исходноеw 1w 2w 0 = 0
относительно звена 1w 1 — w 1 = 0w 21 = w 2 — w 1w 1 = — w 01

Скорость любой точки звена 2 в относительном движении будет равно его угловой скорости в этом движении умноженной на расстояние от этой точки до полюса относительного вращения, т. е.

Перейдем к рассмотрению двух тел 1 и 2 , совершающих вращательное движение, соответственно вокруг центров 0 1 и 0 2 с угловыми скоростями w 1 и w 2 , и образующих между собой высшую кинематическую пару К (рис. 11.7).

Условием существования высшей кинематической пары является условие неразрывности контакта звеньев, которое заключается в том, что проекции скоростей звеньев в точке контакта на контактную нормаль к профилям должны быть равны

т.е. скалярное произведение вектора относительной скорости в точке контакта на орт нормали равно нулю. Это условие обеспечивается, если скорость относительного движения контактных точек лежит на касательной ( в пространстве в касательной плоскости ). При выполнении этого условия профили не отстают друг от друга ( нарушение контакта приведет к исчезновению пары ), и не внедряются друг в друга

( что при принятом допущении о абсолютно жестких звеньях, невозможно ).

Как было показано выше скорость относительного скольжения в точке контакта равна

где l KP — расстояние от контактной точки до полюса относительного вращения. Так как V K2K1 перпендикулярна l KP >, а V K2K1 должна лежать на касательной, то l KP является нормалью к профилям в точке контакта. То есть контактная нормаль к профилям в высшей паре пересекает линию центров в полюсе относительного вращения.

Основная теорема зацепления.

Формулировка анализа. Контактная нормаль к профилям высшей пары пересекает линию центров в полюсе относительного вращения звеньев ( то что полюс делит линию центров на отрезки обратно пропроциональные угловым скоростям было доказано выше ).

Формулировка синтеза. Профили в высшей кинематической паре должны быть выполнены так, чтобы контактная нормаль к ним проходила через полюс относительного вращения звеньев.

Так как положение полюса на линии центров определяет передаточное отношение механизма, то профили удовлетворяющие основной теореме зацепления обеспечивают заданный закон изменения передаточного отношения или являются сопряженными.

Скорость скольжения в высшей КП или перовое следствие основной теоремы зацепления.

Скорость скольжения профилей в высшей КП равна произведению скорости относительного вращения на расстояние от контактной точки до полюса зацепления.

где верхний знак относится к внешнему зацеплению, нижний — к внутреннему. Зацепление считается внешним, если полюс делит линию центров внутренним образом и направления угловых скоростей звеньев противоположны, и внутренним, если полюс делит линию центров внешним образом (Рис. 17.8) и направления угловых скоростей одинаковы.

Из формулы видно, что скорость скольжения во внутреннем зацеплении много меньше, чем во внешнем.

Определение центра вращения ведущего звена или второе следствие основной теоремы зацепления.

Из схемы, изображенной на рис. 11.7, видно, что

т.е. отрезок l KD , отсекаемый от луча, проведенного из точки О 2 через точку K, прямой параллельной контактной нормали, равен передаточной функции точки K 2 .

Второе следствие основной теоремы зацепления.

Формулировка синтеза. Если на продолжении луча, проведенного из точки О 2 через точку K, отложить от точки K отрезок длиной l KD = V K2 / w 1 = V qK2 и через конец этого отрезка провести прямую параллельную контактной нормали, то эта прямая пройдет через центр вращения ведущего звена точку О 1 .

С использованием этого свойства механизма с высшей парой при проектировании кулачковых механизмов определяют радиус начальной шайбы по допустимому углу давления.

Формулировка анализа. Луч проведенный через центр вращения ведущего звена точку О 2 параллельно контактной нормали, отсекает на луче проведенном из точки О 2 через точку K отрезок l KD = V K2 / w 1 = V qK2 , равный передаточной функции точки K 2 .

Угол давления в высшей паре ( на примере плоского кулачкового механизма ).

Рассмотрим плоский кулачковый механизм с поступательно движущимся роликовым толкателем ( Рис. 11.9). Из D BPF

Подставляя эти выражения в формулу для тангенса угла давления, получим

где знак — соответствует смещению оси толкателя (эксцентриситету) вправо от центра вращения кулачка.

Формула Эйлера — Савари.

При синтезе плоских зацеплений широко применяется формула Эйлера-Савари, которая устанавливает связь между радиусами кривизны центроид и радиусами кривизны профилей высшей пары. Эта формула записывается так

где r w1 и r w2 — радиусы кривизны центроид первого и второго звена в полюсе зацепления, r 1 и r 2 — радиусы кривизны профилей в контактной точке, l KP — расстояние от полюса зацепления до контактной точки, j — угол между контактными нормалями к профилям и центроидам.

Теорема Оливье является основополагающей теоремой как для плоских, так и для пространственных зацеплений. Она устанавливает основные признаки определяющие свойства зацепляющихся поверхностей, вид их контакта друг с другом.

Теорема Оливье. Пусть F 1 , F 2 и B некоторые поверхности с определенным абсолютным движением. И пусть F 1 и F 2 огибающие к B в их относительном движении, где — мгновенные контактные линии. Если K 1 -K 1 и K 2 -K 2 имеют общие точки, то поверхности F 1 и F 2 :

  • находятся в точечном контакте, если K 1 -K 1 и K 2 -K 2 пересекаются в некоторой точке K;
  • находятся в линейном контакте, если K 1 -K 1 и K 2 -K 2 сливаюся в одну линию, образуя K -K.

Рис. 11.10

Теорема Оливье имеет три важных следствия:

Следствие 1. Если оба зубчатых колеса обработаны друг другом, т.е. первое колесо обработано инструментом режущие кромки которого копируют второе колесо, а второое — инструментом режущие кромки которого копируют первое, то эти колеса имеют взаимоогибаемые поверхности зубьев с линейным контактом поверхностей.

Следствие 2. Если оба колеса обработаны инструментами, образующими между собой конгруентную пару, то эти колеса имеют взаимоогибаемые поверхности зубьев с линейным контактом поверхностей.

Следствие 3. Если поверхность зацепления И 1 инструмента 1 с колесом 1 и поверхность зацепления И 2 инструмента 2 с колесом 2 совпадает с поверхностью зацепления колес 1 и 2, то зубья колес обработанных при таком условии будут иметь линейный контакт.

Зубчатые передачи и их классификация.

Зубчатыми передачами называются механизмы с высшими кинематическими парами в состав которых входят зубчатые колеса, рейки или секторы — звенья, снабженные профилироваными выступами или зубьями. Зубчатые передачи бывают простые и сложные. Простая зубчатая передача — трехзвенные механизм, состоящий из двух зубчатых колес и стойки, в котором зубчатые колеса образуют между собой высшую пару, со стойкой — низшие ( поступательные или вращательные ).

Простые зубчатые передачи классифицируются:

  • по виду передаточной функции (отношения)
    • с постоянным передаточным отношением;
    • с переменным передаточным отношением;
  • по расположению осей в пространстве
    • с параллельными осями;
    • с пересекающимися осями;
    • с перекрещивающимися осями;
  • по форме профиля зуба
    • эвольвентным профилем;
    • с циклоидальным профилем;
    • с круговым профилем (передачи Новикова);
  • по форме линии зуба
    • с прямым зубом;
    • косозубые;
    • шевронные;
    • с круговым зубом;
  • по форме начальных поверхностей
    • цилиндрические;
    • коническое;
    • гиперболоидные;
  • по форме и виду зубчатых колес
    • червячные;
    • с некруглыми колесами;
    • винтовые.

Эвольвентная зубчатая передача.

Эвольвентная зубчатая передача — цилиндрическая зубчатая передача, профили зубьев которой выполнены по эвольвенте окружности.

Эвольвента окружности и ее свойства.

Эволютой называется геометрическое место центров кривизны данной кривой. Данная кривая по отношению к эволюте называется эвольвентой. Согласно определению нормаль к эвольвенте ( на которой лежит центр кривизны ) является касательной к эволюте. Эвольвенты окружности описываются точками производящей прямой при ее перекатывании по окружности, которую называют основной.

Свойства эвольвенты окружности:

Форма эвольвенты окружности определяется только радиусом основной окружности r b . При эвольвента переходит в прямую линию.

Производящая прямая является нормалью к эвольвенте в рассматриваемой произвольной точке M y . Отрезок нормали в произвольной точке эвольвенты l MyN = r равен радиусу ее кривизны и является касательной к основной окружности.

Эвольвента имеет две ветви и точку возврата М 0 , лежащую на основной окружности. Эвольвента не имеет точек внутри основной окружности.

Точки связанные с производящей прямой но не лежащие на ней при перекатывании описывают: точки расположенные выше производящей прямой W — укороченные эвольвенты, точки, расположенные ниже производящей прямой L — удлиненные эвольвенты.

Параметрические уравнения эвольвенты получим из схемы, изображенной на рис. 11.11 . Так как производящая прямая перекатывается по основной окружности без скольжения то дуга М 0 N равна отрезку NM y . Для дуги окружности

из треугольника D OM y N

получим параметрические уравнения эвольвенты.

Эвольвентное зацепление и его свойства.

В зубчатой передаче контактирующие элементы двух профилей выполняются по эвольвентам окружности и образуют, так называемое эвольвентное зацепление. Это зацепление обладает рядом полезных свойств, которые и определяют широкое распространение эвольвентных зубчатых передач в современном машиностроении. Рассмотрим эти свойства.

Свойство 1. Передаточное отношение эвольвентного зацепления определяется только отношением радиусов основных окружностей и является величиной постоянной.

Свойство 2. При изменении межосевого расстояния в эвольвентном зацеплении его передаточное отношение не изменяется.

Свойство 3. При изменении межосевого расстояния в эаольвентном зацеплении величина произведения межосевого расстояния на косинус угла зацепления не изменяется.

Свойство 4. За пределами отрезка линии зацепления N 1 N 2 рассматриваемые ветви эвольвент не имеют общей нормали, т. е. профили выполненные по этим кривым будут не касаться, а пересекаться. Это явление называется интерференцией эвольвент или заклиниванием.

1. Что называется высшей кинематической парой ? (стр.1)

2. Какие механизмы с высшими парами вы можете назвать ? (стр.2)

3. Как записывается условие существования высшей кинематической пары ? (стр.5)

4. Дайте определение основной теоремы плоского зацепления (стр.6)

5. Что называют линией зацепления (стр.6)

6. По какой формуле можно определить скорость скольжения во внешнем зацеплении? (стр.6)

7. Что называется эвольвентной зубчатой передачей? (стр.10)

8. Сформулируйте основные свойства и запишите параметрические уравнения описывающие ее (стр.11)

9. Изменяется ли передаточное отношение в эвольвентном зацеплении при изменении aw ? ( стр.13)

Основная теорема зацепления

Зубчатые передачи

В зубчатой передаче движение передается с помощью зацепления пары зубчатых колес. Меньшее зубчатое колесо принято называть шестерней, большое – колесом. Термин «зубчатое колесо» относится как к шестерне, так к большому колесу.
При написании расчетных формул и указании параметров передачи шестерне присваивают индекс 1, колесу – индекс 2, например: d1, d2, n1, n2.
Зубчатые передачи являются самым распространенным видом механических передач, поскольку они могут надежно передавать мощности от долей до десятков тысяч киловатт при окружных скоростях до275 м/с. По этой причине они широко применяются во всех отраслях машиностроения и приборостроения.

Достоинства зубчатых передач

К достоинствам этого вида механических передач относятся:

· Высокая надежность работы в широком диапазоне нагрузок и скоростей;

· Сравнительно малые нагрузки на валы и подшипники;

· Постоянство передаточного числа;

Недостатки зубчатых передач

Как и любой другой вид механических передач, зубчатые передачи имеют ряд недостатков, к которым относятся:

· Относительно высокие требования к точности изготовления и монтажа;

· Шум при больших скоростях, обусловленный неточностями изготовления профиля и шага зубьев;

· Высокая жесткость, не дающая возможность компенсировать динамические нагрузки, что часто приводит к разрушению передачи или элементов конструкции (для примера – ременная или фрикционная передача при внезапных динамических нагрузках могут пробуксовывать).

Классификация зубчатых передач

Зубчатые передачи классифицируются по ряду конструктивных признаков и особенностей.
В зависимости от взаимного расположения осей, на которых размещены зубчатые колеса, различают передачи цилиндрические (при параллельных осях), конические (при пересекающихся осях) и винтовые (при перекрещивающихся осях).
Винтовые зубчатые передачи применяются ограниченно, поскольку имеют низкий КПД из-за повышенного скольжения в зацеплении и низкую нагрузочную способность. Тем не менее, они имеют и некоторые достоинства – высокую плавность хода и возможность выводить концы валов за пределы передачи в обе стороны.

На рисунке 1 представлены наиболее широко применяемые виды зубчатых передач:

1 — цилиндрическая прямозубая передача;
2 — цилиндрическая косозубая передача;
3 — шевронная передача;
4 — реечная передача;
5 — цилиндрическая передача с внутренним зацеплением;
6 — винтовая передача;
7 — коническая прямозубая передача;
8 — коническая косозубая передача;
9 — коническая передача со спиралевидными зубьями;
10 — гипоидная передача.

Основы теории зубчатого колеса

Основная теорема зацепления

Профили зубьев колес должны быть сопряженными, т. е. заданному профилю зуба одного колеса должен соответствовать вполне определенный профиль зуба другого колеса.
Чтобы выяснить, какова должна быть форма профиля зубьев пары колес, чтобы зацепление обеспечивало требуемое постоянство передаточного отношения, рассмотрим два зуба С иD, принадлежащих шестерне и колесу передачи и соприкасающихся в точке S (см. рисунок 2).

С – ведущее колесо с центром вращения О1, а D– ведомое колесо с центром вращения в точке О2. Расстояние aw между центрами О1 и О2неизменно.
Зуб шестерни, вращаясь с угловой скоростью ω1, оказывает давление на зуб колеса, сообщая ему угловую скорость ω2.

Проведем через точку Sобщую для обоих профилей касательную ТТ и нормальNN.
Очевидно, что окружные скорости точки касания зубьев S относительно центров вращения О1 и О2будут равны:

Разложим скорости v1 и v2на составляющие v’1 и v’2 по направлению нормали NN и составляющие 1 и 2 по направлению к касательной ТТ.
Для обеспечения постоянного касания профилей необходимо соблюдение условия v’1 = v’2, иначе, если скорость точки касания на зубе шестерни будет меньше скорости точки касания на зубе колеса (т. е. v’1 v’2), произойдет врезание зубьев.

Опустим из центров О1 и О2 перпендикуляры О1В и О2С на нормаль NN.
Поскольку треугольники aeS и BSO1 подобны, можно записать:

Из подобия треугольников afS и CSO2 следует:

Но v’1 = v’2, следовательно:

Нормаль NN пересекает линию центров О1О2 в точке П, называемой полюсом зацепления.
Из подобия треугольников О2ПС и О1ПВ следует:

Сравнивая соотношения (1) и (2), получим:

Это соотношение выражает основную теорему зацепления, которая может быть сформулирована следующим образом:
Для обеспечения постоянного передаточного числа зубчатых колес профили их зубьев должны быть очерчены по кривым, у которых общая нормаль NN, проведенная через точку касания профилей, делит расстояние между центрами О1О2 на части, обратно пропорциональные угловым скоростям.

Полюс зацепления П сохраняет неизменное положение на линии центров О1О2, поэтому радиусы rw2 и rw1 также неизменны. Окружности радиусов rw1 и rw2 называют начальными.
При вращении зубчатых колес начальные окружности перекатываются друг по другу без скольжения, о чем свидетельствует равенство скоростей ω1 rw1 и ω2 rw2, полученное из формулы (3).

Из множества кривых, удовлетворяющих требованиям основной теории зацепления, практическое применение в современном машиностроении получила эвольвента окружности, которая обладает следующими свойствами:

· позволяет получить сравнительно точно и просто профиль зуба в процессе нарезания;

· без нарушения правильности зацепления допускает некоторое изменение межосевого расстояния aw, которое может появиться в результате неточностей изготовления и сборки, деформации деталей передачи при работе;

· обеспечивает высокую точность и долговечность зубьев, малые скорости скольжения точек контакта на поверхности зацепляющихся зубьев и высокий КПД.


источники:

http://tmm-umk.bmstu.ru/lectures/lect_11.htm

http://poisk-ru.ru/s42190t3.html