Основное уравнение динамики 2 закон ньютона

Вывод второго закона Ньютона для вращательного движения + примеры решения задач

Второй закон Ньютона для вращательного движения – главное тождество динамики, помогающее решить основную задачу механики для вращающегося тела: указать угол поворота тела в любой промежуток времени.

Задача механики поступательного движения считается решенной если в любое мгновение легко указать положение материальной точки относительно других тел, при условии, заданной системы отсчета.

Кроме поступательного существует вращательное движение – это такой вид движения при котором каждая точка движется по окружности, центры окружности лежат на одной прямой (оси вращения).

Характеристики вращательного движения:

  • Всякая точка абсолютно твердого тела перемещается по дуге круга;
  • «Ядра» окружностей расположены вдоль одной линии – ось вращения
  • Разные точки передвигаются по разным траекториям;
  • Зависимости перемещения по времени представляют отличные значения, изменяющиеся по направлению;
  • Углы поворота точек – одинаковы.

Аналоги характеристик поступательного и вращательного движения

Параметры вращательного перемещения необходимо рассматривать, проводя сравнение с характеристиками поступательного.

Последовательность нахождения координат тела в любой момент времени для поступательного перемещения:

  1. зная силу F находим ускорение a;
  2. из ускорения находи координаты x,y,z.

Пойдем от обратного для вращательного движения:

Найти нам необходимо угла поворота – φ в любой момент времени, для этого используем угловое ускорение ε, а вот аналог силы F мы пока не знаем.

Опишем кинематику вращательного движения.

  • Аналог линейной скорости во вращательном движении это угловая скорость ω — выражается отношением:

— угол поворота

— незначительный отрезок времени

  • Вспомним формулу линейной скорости υ точки находящейся на вращающемся теле, для этого умножим угловую скорость ω и r — расстояние от оси до искомой точки.

Виды вращательного движения:

Поворот предмета за равные промежутки времени на одинаковые углы говорит о равномерности перемещения. Угловое ускорение отсутствует.

Уравнение движения выглядит:

— угол поворота в любой момент времени,

— начальный угол поворота

Угловая скорость постоянна, но линейная скорость постоянно изменяет направление, а это означает, что существует центростремительное ускорение, направленное по радиусу к центру окружности.

  1. Неравномерное вращение

При неравномерном перемещении постоянное угловое ускорение принимает вид:

При низменном , закон изменения угловой скорости получается:

Подставляя полученные данные в формулу движения при равномерном вращении получим:

Вспомним как рассчитать угол поворота тела тремя разными способами:

Второй способ (через среднюю скорость).

Сравнение формул вращательного и поступательного перемещения наглядно представлено таблично.

При нахождении точки на теле, неравномерно вращающемся на окружности, ускорение приобретает вид суммы:

— центростремительного и тангенциального

— тангенциального .

Сумма ускорений равна:

Тангенциальное ускорение вычисляется следующим образом

Используя связь υ и ω, получается:

Нужно сформулировать ключевые тождества, включая 2 закон сэра Ньютона для вращательного механического движения, сопутствующие обозначения, необходимые в ходе решения задач.

Вывод второго закона Ньютона для вращательного движения

Пусть тело, характеристиками которого можно пренебречь закреплено на невесомом стержне, 0 – ось вращения, длиной эквивалентной отрезку r.

На материальную точку оказывает воздействие силы , – реакция стержня.

— сила реакции нити;

— сила приводящая тело в движение

По II закону английского физика Исаака Ньютона второй закон динамики в векторной форме выглядит:

Выбор системы координат: Y – направляется по радиусу, Х – перпендикулярно.

Переписывая главное правило динамики в проекциях на эти оси:

Для этого на рисунке отобразим угол и выразим через него все проекции.

OX: ,

OY: ,

Из рисунка видно, что — тангенциальное ускорение, и – модуль центростремительного ускорения

Вспомним, что тангенциальное ускорение равно:

Перепишем уравнение проекции на ось x с учетом этого знания:

Вычислим угловое ускорение из полученной формулы:

Умножая на дробь на :

Далее надо визуально отобразить на рисунке rsinα.

Как видно из полученного рисунка перпендикуляр d – плечо силы F.

Сравнивая с выражением:

I=mr 2 – мера инертности тела, момент инерции.

Выходит: 2 закон Ньютона представлен для вращательного движения:

Словесная формулировка основного тождества динамики вращательного перемещения:

Алгебраическая сумма моментов сил, действующих на тело тождественно произведению момента инерции тела на его угловое ускорение.

Практическое применение второго закона Ньютона для вращательного движения

Перемещение путем вращения часто находит практическое применение. Яркие примеры:

  • Колеса транспортных средств;
  • Шестеренки;
  • Роторы электродвигателей.

Простые «мозголомки» из школьного курса физики

Задание 1. Велосипедное колесо

Определить меру инертности у велоколеса диаметром 67 см с массой 1,3 кг? Возможно, не учитывать массу ступицы?

Колесо целесообразно разбить на N мельчайших фрагментов размером Δl с массой Δm.

Мера инертности вычисляется из выражения:

кг х м 2

Задача 2. Взаимодействие кинематики и динамики

Материальная точка перемещается по окружности, ее радиальное ускорение изменяется пропорционально четвертой степени времени. Найти n из отношения .

Записывается второй закон Ньютона для вращательного движения:

Выражая угловую скорость:

Учитывая, неизменность расстояния до центра окружности, :

Упражнение 3. Графическое представление

Одно тело вращается по зависимости 1, потом действие момента сил изменяется согласно графику 2. Нужно сравнить угловые скорости в точках A и B.

Основной закон динамики перемещения путем вращения:

Поскольку тело одно, 1/I неизменно.

Геометрический смысл интеграла – площадь криволинейных трапеций.

Случай 1:

График 2:

Результат:

Получается:

Задание 4. Шары

Два точечных шарика, обладающие равными массами скреплены тонкой невесомой спицей l. Записать выражение момента инерции системы, относительно оси, перпендикулярно соотносящейся со спицей и центром масс.

Центр оси расположен между шарами:

Мера инертности системы:

Упражнение 5. Гири

Грузы массами 2 и 1 килограмм связаны ниткой, перекинутой через блок, весящий 1 килограмм. Вычислить ускорение перемещения гирь? Рассчитать натяжение нитей?

Векторный вид поступательного передвижения:

Перемещение диска – вращение:

Первые 2 равенства надо спроектировать на Х, последнее – Y. Записать уравнение кинематической связи. Получается система:

Подставляя 4 тождество в 3:

Вычитая (2) из (1), переписывается (5):

Численное значение из выражения (6) подставляется в (1) и (2):

Практическое применение в жизни

Автомобиль

Ускорится автомобиль, если установить шины большего диаметра?

Нет. Чем больше диаметр шин, тем выше линейное ускорение. Каждый автомобиль обладает максимальным угловым ускорением, соответствующее его мощности. Мощность машины ограничена, увеличение диаметра шин приведет к снижению углового ускорения, линейное не изменится.

«Что-то странная какая-то утка, на курицу похожа…»

Домашние птицы: селезень и курица имеют одинаковую длину шага. Почему курица бегает ровно, а селезень перемещается переваливаясь?

Расстановка лап селезня шире, центр тяжести расположен дальше от опоры, поэтому при ходьбе селезень вынужден делать поворот на больший угол. Момент силы тяжести от опоры увеличивается, соответственно становится больше величины угловых ускорения и скорости.

Гонки

Европейские гонки проходят по улицам города, поэтому гонщики не снижая большой скорости совершают резкие повороты. Двигатель гоночных машин расположен посередине авто. Содержание преимущества?

Двигатель посередине авто, обладает меньшей мерой инертности относительно центра масс, поэтому поворот осуществляется при меньшем моменте сил.

Фигурное катание

Зачем фигурист прижимает руки к телу?

Фигурист, вращаясь вокруг вертикальной оси, прижимает руки к корпусу. Момент инерции уменьшается, момент импульса остается неизменным, угловая скорость увеличивается.

Невесомость

Космонавт находится в невесомости. Как ему совершить поворот на 180˚ вокруг продольной оси?

Распутывание Гордиева узла:

Для поворота космонавт поднимает руку над головой, провоцируя поступательные движения в направлении, противоположенному повороту.

О кошках

Эмиль Кроткий утверждал: «Кошка мечтала о крыльях: ей хотелось попробовать летучих мышей». Люди не раз пытались подкидывать животное вверх ногами, при этом приземление всегда осуществляется на лапы. Момент внешних сил равен нулю, момент импульса сохраняется. Как кошке удается переворачиваться?

Момент импульса кошки, находящейся в свободном падении остается постоянным, моменты внешних сил отсутствуют. Вытягивая или прижимая к телу лапы, кошка изменяет меру инертности передней части тела относительно центральной оси от момента инерции задней части тела. Попеременно подтягивая передние или задние лапы, животное совершает поворот, ускоряющийся вращением хвоста.

Освоение 2 закона Исаака Ньютона с учетом кинематических и динамических характеристик для вращательного механического движения на практических примерах – легкое задание: надо запастись терпением, желанием приобретать знания. Изучать физику лучше вооружившись высказыванием Морихэй Уэсибы: «Двигайся, как луч света, летай, как молния, бей, как гром, вращайся вокруг устойчивого центра!»

Законы Ньютона. Динамика.

теория по физике 🧲 динамика

Три закона Ньютона

Динамика — раздел механики, изучающий причины движения тел и способы определения их ускорения. В нем движение тел описывается с учетом их взаимодействия.

Большой вклад в развитие динамики внес английский ученый Исаак Ньютон. Он первым смог выделить законы движения, которым подчиняются все макроскопические тела. Эти законы называют законами Ньютона, законами механики, законами динамики или законами движения тел.

Внимание! Законы Ньютона нельзя применять к произвольным телам. Они применимы только к точке, обладающей массой — к материальной точке.

Основное утверждение механики

Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:

Основное утверждение механики

Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.

Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).

Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.

Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.

Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.

Первый закон Ньютона

Исаак Ньютон, изучая движение тел, заметил, что относительно одних систем отсчета свободные тела сохраняют свою скорость, а относительно других — нет. Он разделил их на две большие группы: инерциальные системы отсчета и неинерциальные. В этом кроется первый закон динамики.

Первый закон Ньютона

Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано.

Примером инерциальной системы отсчета служит система отсчета, связанная с Землей (геоцентрическая). Другой пример — гелиоцентрическая система отсчета (связанная с Солнцем).

Неинерциальная система отсчета — система отсчета, в которой тела могут менять свою скорость при отсутствии на них действия других тел.

Примером неинерциальной системы отсчета служит автобус. Когда он движется равномерно и прямолинейно, стоящие внутри пассажиры находятся относительно него в состоянии покоя. Но когда автобус останавливается, пассажиры падают вперед, т. е. меняют свою скорость, хотя на них не действуют другие тела.

Второй закон Ньютона

В примере с автобусом видно, что пассажиры стараются сохранить свою скорость относительно Земли — инерциальной системы отсчета. Такое явление называется инерцией.

Инерция — явление, при котором тело сохраняет состояние покоя или равномерного прямолинейного движения.

Инертность — физическое свойство, заключающееся в том, что любое тело оказывает сопротивление изменению его скорости (как по модулю, так и по направлению).

Не все тела одинаково инертны. Вы можете взять мячик и придать ему большое ускорение. Но вы не можете придать такое же ускорение гире, хотя она обладает похожим размером. Но мячик и гиря различаются между собой массой.

Масса — скалярная физическая величина, являющаяся мерой инертности тела. Чем больше масса, тем больше инертность тела.

Масса обозначается буквой m. Единица измерения массы — кг. Прибор для измерения массы — весы.

Чтобы придать одинаковую скорость двум телам с разной инертностью, к телу с большей инертностью придется приложить больше силы. Попробуйте сдвинуть с места стол, а затем — шкаф. Сдвинуть с места стол будет проще.

Если же приложить две одинаковые силы к телам с разной инертностью, будет видно, что тело с меньшей инертностью получает большее ускорение. Если приставить к пружине теннисный шарик, а затем сжать ее и резко отпустить, шарик улетит далеко. Если вместо теннисного шарика взять железный, он лишь откатится на некоторое расстояние.

Описанные выше примеры показывают, что между силой, прикладываемой к телу, и ускорением, которое оно получает в результате прикладывания этой силы, и массой этого тела есть взаимосвязь. Она раскрывается во втором законе Ньютона.

Второй закон Ньютона

Сила, действующая на тело, равна произведению массы этого тела на ускорение, которое сообщает эта сила.

где F — сила, которую прикладывают к телу, a — ускорение, которое сообщает эта сила, m — масса тела

Сила — количественная мера действия тел друг на друга, в результате которого тела получают ускорения.

Сила — векторная физическая величина. Обозначается F . Единица измерения — Н (Ньютон). Прибор для измерения силы — динамометр.

Пример №1. Определить, с какой силой действует Земля на яблоко, если, упав с ветки, оно получило ускорение 9,8 м/с 2 . Масса яблока равна 200 г.

Сначала переведем массу яблока в кг. 200 г = 0,2 кг. Теперь найдем силу, действующую на яблоко со стороны Земли, по второму закону Ньютона:

F = ma = 0,2 ∙ 9,8 = 1,96 (Н)

Равнодействующая сила

Иногда на тело действуют несколько сил. Тогда при описании его движения вводится понятие равнодействующей силы.

Равнодействующая сила — векторная сумма всех сил, действующих на тело одновременно.

В этом случае второй закон Ньютона формулируется так:

Второй закон Ньютона через равнодействующие силы

Если на тело действует несколько сил, но их равнодействующая R будет равна произведению массы на ускорение этого тела.

Правила сложения сил и их проекций

Сложение двух сил, направленных вдоль одной прямой в одну сторону

Если F 1↑↑ F 2, то:

Равнодействующая сила сонаправлена с обеими силами.

Сложение двух сил, направленных вдоль одной прямой во взаимно противоположных направлениях

Если F 1↑↓ F 2, то:

Равнодействующая сила направлена в сторону направления большей по модулю силы.

Сложение двух сил, перпендикулярных друг к другу

Если F 1 перпендикулярна F 2, то равнодействующая сила вычисляется по теореме Пифагора:

Сложение двух сил, расположенных под углом α друг к другу

Если F 1 и F 2 расположены под углом α друг к другу, равнодействующая сила вычисляется по теореме косинусов:

Сложение трех сил

Способ сложения определяется правилами сложения векторов. В данном случае:

Сложение проекций сил

Проекция на ось ОХ:

Проекция на ось OY:

Третий закон Ньютона

Когда одно тело действует на другое, начинается взаимодействие этих тел. Это значит, если тело А действует на тело В и сообщает ему ускорение, то и тело В действует на тело А, тоже придавая ему ускорение. К примеру, если сжать пружину руками, то руки будут чувствовать сопротивление, оказываемое силой упругости пружины. Если же, находясь в лодке, начать тянуть за веревку вторую лодку, то обе лодки будут двигаться навстречу друг другу. То есть, вы, находясь в своей лодке, тоже будете двигаться навстречу второй лодке.

Иногда на тело действует сразу несколько сил, но тело продолжает покоиться. В этом случае говорят, что силы друг друга компенсируют, то есть их равнодействующая равна нулю.

Две силы независимо от их природы считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорости.

Примером такого явления служит ситуация, когда при перетягивании каната его никто не может перетянуть в свою сторону. Если взять два каната и присоединить между ними два динамометра, а затем начать игру в перетягивание, выяснится, что показания динамометра всегда будут одинаковыми. Это значит, что независимо от масс и придаваемых ускорений два взаимодействующих тела оказывают друг на друга равные по модулю силы. В этом заключается смысл третьего закона Ньютона.

Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

Используя второй закон Ньютона, третий закон механики можно переписать иначе:

Отношение модулей ускорений a 1 и a 2 взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил.

Пример №2. Определить ускорение, с которым движется Земля к падающему на нее яблоку. Масса яблока равна 0,2 кг. Ускорение свободного падения принять равной за 10 м/с 2 . Массу Земли принять равно 6∙10 24 кг.

Согласно третьему закону Ньютона модули сил, с которыми взаимодействуют Земли и яблоко, равны. Поэтому:

Пусть тело 1 будет яблоко, а тело 2 — Земля. Тогда a1 будет равно g. Отсюда ускорение, с которым движется Земля к падающему на нее яблоку, равна:

Скорость тела массой 5 кг, движущегося вдоль оси Ох в инерциальной системе отсчёта, изменяется со временем в соответствии с графиком (см. рисунок). Равнодействующая приложенных к телу сил в момент времени t=2,5 с равна…

Второй закон Ньютона

Второй закон Ньютона – основной закон динамики. Этот закон выполняется только в инерциальных системах отсчета.

Приступая к формулировке второго закона, следует вспомнить, что в динамике вводятся две новые физические величины – масса тела \( m \) и сила \( \vec \) , а также способы их измерения.

Первая величина – масса \( m \) – является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Вторая величина – сила \( \vec \) – является количественной мерой действия одного тела на другое.

Второй закон Ньютона – это фундаментальный закон природы; он является обобщением опытных фактов, которые можно разделить на две категории:

Если на тела разной массы подействовать одинаковой силой, то ускорения, приобретаемые телами, оказываются обратно пропорциональны массам: \( a \sim \dfrac<1> \), при \( F = const\).

Если силами разной величины подействовать на одно и то же тело, то ускорения тела оказываются прямо пропорциональными приложенн силам: \( \vec \sim \vec \), при \( m = const \) .

Обобщая подобные наблюдения, Ньютон сформулировал основной закон динамики:

Второй закон Ньютона Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение

\[ \LARGE \vec = m \cdot \vec \]

Это и есть второй закон Ньютона. Он позволяет вычислить ускорение тела, если известна его масса \( m \) и действующая на тело сила \( \vec \)

Основной закон динамики Ускорение тела прямо пропорционально сумме действующих на него сил и обратно пропорционально массе тела.

1 Ньютон В Международной системе единиц (СИ) за единицу силы принимается сила, которая сообщает телу массой 1 кг ускорение 1 м/с2 . Эта единица называется ньютоном (Н). Ее принимают в СИ за эталон силы :

Если на тело одновременно действуют несколько сил (например, \( \vec \) , \( \vec \) и \( \vec \) то под силой \( \vec \) в формуле, выражающей второй закон Ньютона, нужно понимать равнодействующую всех сил: \( \vec = \vec + \vec + \vec \) .

Если равнодействующая сила \( \vec = 0 \) , то тело будет оставаться в состоянии покоя или равномерного прямолинейного движения. Таким образом, формально второй закон Ньютона включает как частный случай первый закон Ньютона, однако первый закон Ньютона имеет более глубокое физическое содержание – он постулирует существование инерциальных систем отсчета.


источники:

http://spadilo.ru/zakony-nyutona-dinamika/

http://calcsbox.com/post/vtoroj-zakon-nutona.html