Основное уравнение динамики на оси координат

Динамика твердого тела и системы. Все определения, законы и теоремы

Механическая система. Основные понятия

Свойства внутренних сил

Приводимые ниже свойства внутренних сил являются третьим законом Ньютона для системы материальных точек.

Свойство 1
Векторная сумма (главный вектор) всех внутренних сил системы равна нулю:
.

Свойство 2
Векторная сумма моментов всех внутренних сил системы, относительно произвольной точки O равена нулю:
.

Дифференциальные уравнения движения точек системы

Согласно второму закону Ньютона, дифференциальное уравнение движения материальной точки k массой mk , входящей в систему, имеет вид:
.
Спроектировав это уравнение на оси декартовой системы координат Oxyz , получим для каждой точки три уравнения:
.

Общие теоремы динамики механической системы

Общие теоремы динамики – это теорема о движении центра масс механической системы, теорема об изменении количества движения, теорема об изменении главного момента количества движения (кинетического момента) и теорема об изменении кинетической энергии механической системы.

Теорема о движении центра масс механической системы

Теорема о движении центра масс механической системы
Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил:
.

Здесь – масса системы; – ускорение центра масс системы: ;
– скорость центра масс системы: ;
– радиус вектор (координаты) центра масс системы: ;
– координаты и массы точек, из которых состоит система.

Теорема об изменении количества движения (импульса)

Теорема об изменении количества движения в дифференциальной форме
Производная по времени от количества движения (импульса) системы равна векторной сумме всех действующих на систему внешних сил:
.

Теорема об изменении количества движения в интегральной форме
Изменение количества движения (импульса) системы за некоторый промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени:
.

Закон сохранения количества движения (импульса)
Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма проекций внешних сил на какую-либо ось равна нулю, то проекция количества движения системы на эту ось будет постоянной.

Тело переменной массы. Движение ракеты

Уравнение Мещерского
Дифференциальное уравнение движения точки переменной массы называется уравнением Мещерского:
.
Здесь – масса тела, которая является функцией от времени t ; – векторная сумма приложенных к телу внешних сил; – скорость отделяющихся частиц относительно тела.

Реактивная сила направлена в сторону, противоположную истечению отделяющихся частиц (топлива), и определяется по формуле:
,
где – расход топлива (кг/с).

Формула Циолковского

Скорость v движения ракеты под действием одной только реактивной силы определяется по формуле Циолковского:
.
Здесь – начальная скорость ракеты; u – скорость истечения реактивных газов относительно ракеты; – масса сгоревшего топлива; – масса корпуса ракеты с остатками топлива. Когда топливо выгорает полностью, то – это масса корпуса ракеты с полезной нагрузкой.

Отношение первоначальной массы ракеты (с полным запасом топлива) к массе корпуса ракеты называется числом Циолковского:
.
Для достижения первой космической скорости км/с , при , требуется, чтобы скорость истечения реактивных газов была не менее км/с . В современных жидкостных двигателях удается получить скорость истечения км/с . Поэтому, для достижения космических скоростей, ракеты должны быть многоступенчатыми.

Теорема об изменении главного момента количества движения (теорема моментов)

Теорема моментов в инерциальной системе координат

Главный момент количества движения (или кинетический момент) системы является характеристикой вращательного движения. Возьмем систему координат Oxyz с началом в точке O . Тогда , проекции кинетического момента системы на оси координат являются моментами количества движения системы относительно этих осей:
;
;
.

Если система состоит из нескольких частей, то главный момент количества движения системы равен сумме моментов количеств движения отдельных ее частей.

Теорема об изменении главного момента количества движения (теорема моментов)
Производная по времени от главного момента количества движения системы относительно некоторого неподвижного центра O равна сумме моментов всех внешних сил системы относительно того же центра:
(М2) .

Выпишем компоненты уравнения (М2) в неподвижной системе координат Oxyz :
;
;
.

Закон сохранения главного момента количества движения (момента импульса)
Если сумма моментов всех приложенных к системе внешних сил относительно данного неподвижного центра O равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения:
.

Часто встречаются случаи, когда система вращается вокруг неподвижной оси. Тогда нужно спроектировать векторное уравнение (М2) на направление этой оси. В результате получим теорему моментов, применительно к вращению относительно оси.

Производная по времени от кинетического момента системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил системы относительно этой оси. Если сумма моментов всех приложенных к системе внешних сил относительно некоторой неподвижной оси равна нулю, то кинетический момент системы относительно этой оси будет постоянным.

Теорема моментов в системе координат, связанной с центром масс

Кинетический момент системы относительно неподвижного центра удобно использовать в тех задачах, в которых система имеет одну или несколько закрепленных точек. Например при вращении тела или системы тел вокруг точки или оси. Когда таких точек нет, то наиболее удобным в использовании является кинетический момент относительно центра масс в системе координат, в которой центр масс покоится, а оси остаются параллельными осям инерциальной системы отсчета. В общем случае, система отсчета, связанная с центром масс, не является инерциальной, но она не вращается относительно инерциальной системы отсчета.

Главным моментом количества движения системы относительно ее центра масс C называется величина , равная векторной сумме моментов количеств движения всех точек системы относительно центра масс в системе отсчета, в которой центр масс покоится, а оси системы координат параллельны осям инерциальной системы координат:
(М3) .
Здесь – скорости точек системы и скорость ее центра масс в инерциальной системе отсчета. Тогда – скорость точки массой в системе отсчета, связанной с центром масс.

Связь кинетических моментов в различных системах отсчета
Кинетический момент системы относительно неподвижной точки O равен сумме кинетического момента центра масс C , если в нем сосредоточить всю массу системы, и кинетического момента системы относительно центра масс :
(М4) .

То есть можно сказать, что вращение системы вокруг неподвижной точки O складывается из вращения центра масс C вокруг точки O , и вращения элементов системы вокруг центра масс C .

В (М2) ⇑ мы использовали кинетический момент системы, вычисляемый относительно произвольной неподвижной точки в инерциальной системе отсчета. Уравнения для кинетического момента имеют тот же вид, если в качестве полюса взять центр масс C системы.

Теорема моментов относительно центра масс системы
Производная по времени от главного момента количества движения системы относительно ее центра масс C , равна сумме моментов всех внешних сил системы относительно того же центра:
(М5) .

В (М5) мы используем неинерциальную систему координат, начало которой, в течении всего движения системы, находится в центре масс, а оси параллельны осям инерциальной системы координат. Естественно, что если мы выберем инерциальную систему координат, начало которой в данный момент времени совпадает с центром масс, то теорема моментов не изменит своего вида (М5). То есть центр масс обладает такой особенностью, что теорема моментов относительно него имеет одну и ту же форму, как в инерциальной системе отсчета, так и в неинерциальной системе, начало которой на всем протяжении движения совпадает с центром масс, а оси параллельны осям инерциальной системы отсчета. Такая особенность возникает только для центра масс системы. Для других точек, уравнение моментов в неинерциальной системе отсчета не имеет вида (М5).

Кинетический момент твердого тела

Пусть твердое тело вращается с угловой скоростью ω вокруг неподвижной оси Oz . Тогда его кинетический момент относительно этой оси равен произведению момента инерции относительно этой оси на угловую скорость вращения:
.
Если на твердое тело действуют внешние силы, то применяя теорему моментов, находим:
.
Если момент сил относительно оси Oz равен нулю: , то угловая скорость постоянна: .

В произвольном случае, кинетический момент выражается через компоненты угловой скорости и тензора инерции. Пусть, в данный момент времени, скорость точки O тела равна нулю: . То есть точка O является мгновенным центром вращения тела. Тогда компоненты кинетического момента тела относительно точки O определяется по формуле:
.
Здесь – компоненты тензора инерции тела ⇑ относительно точки O . Они связаны с моментами инерции формулами ⇑. Также подразумевается, что индексы p, q принимают значения x, y, z :
.

Здесь мы выбрали в качестве полюса неподвижную (в рассматриваемый момент времени) точку. Если, в качестве полюса выбрать центр масс тела, то компоненты момента импульса определяются по аналогичной формуле:
.
Для других точек, момент импульса выражается через угловую скорость более сложным образом.

В большинстве случаев, наиболее удобным полюсом оказывается центр масс C тела. Тогда, для компонент кинетического момента относительно произвольного центра O , имеем:
.
Здесь – радиус-вектор, проведенный из точки O в точку центра масс C ; m – масса тела; – скорость центра масс; – компоненты тензора инерции относительно точки C . Как видно, первое слагаемое является кинетическим моментом материальной точки, находящейся в центре масс тела и движущейся со скоростью центра масс. Второе слагаемое является вкладом вращения тела относительно его центра масс. То есть, как было указано выше ⇑, кинетический момент твердого тела относительно произвольной неподвижной точки O равен сумме кинетического момента поступательного движения центра масс относительно точки O и кинетического момента вращательного движения тела относительно его центра масс.

Теорема об изменении кинетической энергии

Кинетической энергия системы

Если система состоит из нескольких тел, то кинетическая энергия системы равна сумме кинетических энергий тел, составляющих систему.

Теорема Кенига
Кинетическая энергия системы равна сумме кинетической энергии центра масс C системы, масса m которого равна массе всей системы: , и кинетической энергии этой системы в ее движении относительно центра масс:
.
Здесь – скорость движения центра масс.

Если тело массы m совершает поступательное движение со скоростью , то скорости всех его точек равны . Кинетическая энергия поступательного движения:
(К1) .

Если тело вращается с угловой скоростью ω вокруг неподвижной оси Oz , то кинетическая энергия вращательного движения определяется по формуле:
(К2) ,
где – момент инерции тела относительно оси вращения.

В произвольном случае, кинетическая энергия равна сумме кинетической энергии поступательного движения центра масс и энергии вращательного движения относительно центра масс:
(К3) .
Здесь ω – абсолютное значение угловой скорости вращения тела; CL – ось, проведенная через центр масс, параллельно направлению вектора угловой скорости; – момент инерции относительно оси CL . Направление оси вращения может меняться со временем. Указанная формула дает мгновенное значение кинетической энергии.

Формула (К3) удобна, если тело вращается вокруг неподвижной оси. Если же вектор угловой скорости может менять направление относительно тела, то нам пришлось бы вычислять момент инерции относительно каждого положения оси вращения. В этом случае удобно выразить кинетическую энергию вращения через компоненты тензора инерции относительно центра масс тела:
(К4) .

Работа сил и мощность

Все сказанное в отношении работы и потенциальной энергии в разделе «Динамика материальной точки», имеет место и для динамики системы тел.
См. Работа силы. Мощность Силовые поля и потенциальная энергия
Единственное отличие заключается в том, что там силы приложены только к одной исследуемой точке. Для системы, внешние силы могут быть приложены к разным точкам, составляющих систему. При этом одна сила приложена только к одной точке, но этих сил может быть много. Точку, к которой приложена сила называют точкой приложения силы.

При рассмотрении твердых тел, мы можем упростить реальную систему сил, воспользовавшись результатами статики. Для этого нужно преобразовать сложную систему реальных сил на эквивалентную ей, более простую, систему. Так например, систему сил тяжести, действующих на каждую точку тела, можно заменить одной равнодействующей силой, приложенной к центру масс тела. Тогда все вычисления можно выполнять только для одной силы с точкой приложения в центре масс тела.

Работа при перемещении точки

Элементарная работа , которую совершает сила , при элементарном перемещении ее точки приложения, равна скалярному произведению векторов силы и перемещения:
;
.
То есть она равна произведению модуля вектора силы , перемещения и косинусу угла между ними. Это, в свою очередь, равно произведению касательной компоненты силы к траектории движения, и модуля элементарного перемещения . Здесь – скорость точки приложения силы; – промежуток времени, в течении которого происходит перемещение.

Мощность равна скалярному произведению векторов силы и скорости:
.

Работа , которую совершает сила , при перемещении точки ее приложения из точки в точку , равна сумме (интегралу) элементарных работ:
.

Работа при движении тела

Если тело движется поступательно, то скорости и перемещения всех его точек равны. В этом случае, работа и мощность вычисляются также как и при перемещении точки. Этот случай рассмотрен выше.

Для тела, вращающегося вокруг неподвижной оси Oz , элементарная работа равна произведению момента силы относительно этой оси на элементарный угол поворота dφ :

.
Здесь – мгновенное значение угловой скорости вращения; dt – время, в течении которого происходит поворот на угол dφ .
Мощность равна произведению момента силы на угловую скорость:
.

Для тела, вращающегося вокруг неподвижной точки O , элементарная работа равна скалярному произведению вектора момента силы относительно этой точки на вектор элементарного угла поворота :

.
Вектор элементарного поворота направлен вдоль вектора мгновенной угловой скорости : .
Мощность равна скалярному произведению векторов момента силы и угловой скорости:
.

При произвольном движении твердого тела, мы, произвольным образом, выбираем точку O , связанную с телом, которую называем полюсом. Тогда элементарная работа равна работе, которую совершает сила при перемещении полюса , и работе момента силы относительно полюса при элементарном повороте тела:
.
Заметим, что элементарный угол поворота и угловая скорость вращения не зависят от выбора полюса.
Мощность:
.

Теорема об изменении кинетической энергии системы

Теорема об изменении кинетической энергии системы в дифференциальной форме.
Дифференциал (приращение) кинетической энергии системы при некотором ее перемещении равно сумме дифференциалов работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Теорема об изменении кинетической энергии системы в интегральной форме.
Изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Неизменяемая система – это механическая система, в которой расстояние между любыми двумя взаимодействующими точками остается постоянным во все время движения.
Идеальные связи – это связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю.

Для систем с идеальными связями и неизменяемых систем, сумма работ внутренних сил равна нулю: . Для таких систем, изменение кинетической энергии системы равно сумме работ всех внешних сил, приложенных к системе:
.

Коэффициент полезного действия

В машинах и механизмах, совершающих некоторую полезную работу, силы можно разделить на следующие виды.

Движущие силы – это силы, совершающие положительную работу Aзатр .
Силы полезного сопротивления – это силы, совершающие отрицательную работу – Aпол. сопр , но выполняют полезное действие.
Силы вредного сопротивления – это силы, совершающие отрицательную работу – Aвр. сопр , и не выполняющие полезных действий.
Попеременные силы – это силы, совершающие то положительную, то отрицательную работу, но за достаточно большой промежуток времени, их сумма работ равна нулю. Механический коэффициент полезного действия машины – это величина, равная отношению работы полезных сил сопротивления (полезной работы) к работе движущих сил (затраченной на приведение машины в движение):
.

Пусть Nмаш – полезная мощность машины; Nдв – мощность двигателя. Тогда
.

Закон сохранения полной механической энергии

Если система движется под действием потенциальных сил, то сумма кинетической T и потенциальной Π энергий сохраняет постоянное значение:
.

Механическая энергия – это сумма кинетической и потенциальной энергии.

Уменьшение механической энергии, как правило, связано с ее превращением в тепловую, электрическую, электромагнитную энергию, энергию звука и электромагнитных колебаний (свет, электромагнитные волны). Увеличение механической энергии связано с обратными процессами превращения различных видов энергии в механическую.

Геометрия масс

Моменты и тензор инерции твердого тела

В этом разделе мы рассматриваем величины, характеризующие распределение массы системы в пространстве.

Сложившаяся система обозначений

Тензор инерции твердого тела

Для вычисления момента импульса и кинетической энергии твердого тела, нам нужно знать всего несколько характеристик тела, величины которых зависят от распределения масс точек, составляющих тело. Эти величины составляют компоненты, так называемого, тензора инерции , который определяется относительно некоторого, предварительно выбранного, центра O , и вычисляется по формуле:
(И1) .
Здесь – координаты точки массы в декартовой системе координат, с началом в выбранном центре O ; при p = q , при p ≠ q . Индексы координат нумеруют цифрами, придерживаясь следующих обозначений:
.

Тензор инерции имеет следующие шесть компонент:
;
;
.
Если в качестве полюса O выбрать центр масс C тела, то компоненты момента импульса и кинетическая энергия тела T вычисляются по относительно простым формулам:
.
Здесь – скорость центра масс тела, – компоненты угловой скорости.

Моменты инерции твердого тела

Пользоваться тензором инерции (И1) ⇑ удобно, поскольку, при решении задач, мы сразу можем применить результаты теории тензорного исчисления. Однако сложилось так, что вместо тензора инерции вводят его отдельные компоненты, придав им специфические названия и обозначения.
Осевые моменты инерции:
;
Центробежные моменты инерции:
.
Все это может привести к путанице. Поэтому компоненты тензора инерции мы будем обозначать буквой I . А сложившиеся названия и обозначения его отдельных компонент – буквой J .

Определения моментов инерции

Свойства моментов инерции

Сумма осевых моментов инерции

Знаки моментов инерции
Осевые моменты инерции не могут быть отрицательными:
.
Центробежные моменты инерции могут быть положительными, отрицательными, или равными нулю.

Симметричность моментов инерции
Центробежные моменты инерции симметричны относительно своих индексов:
.

Все моменты инерции имеют размерность [кг·м 2 ].

Для вычисления моментов инерции сплошных тел, мы от суммирования переходим к интегрированию. При этом массу точки mk мы заменяем на дифференциал: . Дифференциал массы dm выражаем через плотность μ и элемент объема : . Далее интегрируем по объему тела V :
.

Моменты инерции в разных системах координат

Если мы от начальной системы координат Oxyz перейдем к другой системе O′x′y′z′ , то величины моментов инерции в новой системе будут отличаться от моментов в старой системе координат. Такие переходы называются преобразованиями системы координат.

Повороты системы координат

Сначала рассмотрим случай, когда две декартовы системы координат Oxyz и Ox′y′z′ имеют общее начало O . То есть вторая система получена из первой поворотом вокруг общего центра O . Согласно тензорной алгебре, любой симметричный тензор, поворотом системы координат можно привести к диагональному виду. То есть можно найти такую декартову систему координат, относительно которой все центробежные моменты равны нулю. Оси такой системы координат называются главными осями инерции тела.

Главная ось инерции тела , относительно некоторой точки O – это ось, для которой оба центробежных момента инерции, содержащие индекс этой оси, равны нулю. Например, если ось z – главная ось инерции, то .
Главный момент инерции тела , относительно некоторой точки O – это момент инерции относительно главной оси инерции.
Главная центральная ось инерции тела – это главная ось, проходящая через центр масс тела.
Главный центральный момент инерции тела – это момент инерции относительно главной центральной оси инерции.

Любое тело в пространстве имеет три главные оси инерции и три значения главных моментов инерции (относительно предварительно выбранной точки O ). При этом главные моменты инерции могут иметь равные значения.
Стоит подчеркнуть, что главные оси определяются относительно определенной точки тела. При выборе другой точки, главные оси могут иметь другие направления.

Тело с плоскостью симметрии
Если распределение массы тела в пространстве имеет плоскость симметрии, то любая ось, перпендикулярная к этой плоскости, будет главной осью инерции тела, а две другие главные оси лежат в плоскости симметрии.

Тело с осью симметрии
Если распределение массы тела в пространстве имеет ось симметрии, то эта ось является главной центральной осью инерции.

Параллельность главных осей
Если точка O расположена на главной центральной оси тела, то главные оси, проходящие через эту точку, параллельны главным центральным осям.

Главная ось, не проходящая через центр масс
Главная ось инерции, не проходящая через центр масс тела, является главной осью инерции только в одной точке.

Инвариантность суммы осевых моментов инерции
Если от одной системы координат Oxyz , мы перейдем к другой Ox′y′z′ с тем же началом, то сумма осевых моментов инерции не изменится при переходе от одной системы к другой:
.

По этой причине, величина полярного момента инерции не зависит от поворотов системы координат. То есть является инвариантом относительно поворотов системы координат. Она зависит от выбранного центра, относительно которого определяются моменты инерции.

Момент инерции относительно произвольной оси

Пусть нам известны моменты инерции тела относительно осей Oxyz . И пусть OL – произвольная ось, проходящая через начало O , составляющая углы с осями Ox, Oy, Oz . Тогда момент инерции тела относительно оси OL определяется по формуле:

.
Если оси x,y,z являются главными осями, то
.

Перенос системы координат. Теорема Гюйгенса-Штейнера

Отсюда следует, что осевой момент инерции будет иметь наименьшее значение относительно той оси, которая проходит через центр масс тела.

Моменты инерции некоторых тел

Однородный стержень

Рассмотрим тонкий однородный стержень длины l и массы m . Выберем начало координат O на одном из его концов. Направим ось Ox вдоль стержня; оси Oy и Oz – перпендикулярно. Эти оси будут главными осями инерции стержня относительно центра O . Осевые моменты инерции имеют следующие значения:
.

Центр масс стержня находится по его середине, в точке C ; . Проведем через нее оси координат Cxy′z′ , параллельные предыдущим. Эти оси являются главными центральными осями инерции со следующими значениями осевых моментов:
.

Прямоугольный параллелепипед

Рассмотрим прямоугольный параллелепипед с длинами ребер a, b, c (см. рисунок). Его центр масс C находится в центре параллелепипеда. Оси, проведенные через центр масс параллельно сторонам, будут главными центральными осями инерции. Моменты инерции прямоугольного параллелепипеда:

.

Полый цилиндр

Рассмотрим полый цилиндр высоты H и радиусами . Его центр масс находится на оси цилиндра, на расстоянии от основания. Через точку C проводим главные центральные оси инерции: ось Cz – вдоль оси цилиндра; оси Cx, Cy – перпендикулярно. Моменты инерции полого цилиндра:

.

Однородный сплошной диск
Тонкий обруч

Динамика твердого тела

Свободное движение твердого тела

Рассмотрим твердое тело массы m , перемещение которого не ограничено в пространстве. Пусть на тело действуют внешние силы , приложенных в точках . Для определения уравнений движения, мы воспользуемся теоремой о движении центра масс ⇑, теоремой моментов относительно центра масс системы ⇑, и выражением кинетического момента тела через компоненты угловой скорости ωq и тензора инерции Ipq тела (в системе координат с началом в центре масс, оси которой параллельны осям неподвижной системы):
(Т1) ;
(Т2) ;
(Т3) .
Здесь – радиус-вектор, проведенный в центр масс тела.

При известных внешних силах , из уравнения (Т1) можно определить закон движения центра масс тела.

Уравнения (Т2)–(Т3) определяют закон движения тела при его вращении. Они записаны в системе отсчета, начало которой находится в центре масс C , а оси параллельны осям инерциальной системы отсчета. Чтобы ими воспользоваться, мы должны найти способ, с помощью которого можно задать положение тела при его вращении. Это можно сделать с помощью углов Эйлера. Тогда оси вращающейся системы координат, связанной с телом, удобно направить вдоль главных центральных осей инерции тела ⇑. Тогда правые части уравнений (Т3) будут выражаться через главные центральные моменты инерций тела ⇑, три угла Эйлера и их производные по времени. Дифференцируя (Т3) и подставляя в (Т2), получим систему дифференциальных уравнений второго порядка для трех углов Эйлера.

Поступательное движение твердого тела

Рассмотрим поступательное движение твердого тела. Для него угловая скорость и угловое ускорение равны нулю: . Тогда момент количества движения постоянен и равен нулю: . Из (Т2) следует, что и главный момент всех внешних сил относительно центра масс должен равняться нулю: .
Дифференциальные уравнения поступательного движения определяются по формулам (Т1) ⇑:
.
Здесь – проекции внешней силы на оси координат. При поступательном движении, все точки тела имеют равные скорости и равные ускорения. Потому определив закон движения одной точки – центра масс , мы получаем закон движения произвольной точки A :
.

Плоское движение твердого тела

Рассмотрим плоское движение твердого тела. Выберем инерциальную систему координат Oxyz . Оси Ox и Oy направим в плоскости движения. Тогда положение тела полностью определяется тремя величинами – двумя компонентами радиус-вектора центра масс C : ; и углом поворота φ . Внешние силы также лежат в рассматриваемой плоскости. Кинетический момент направлен вдоль оси z и выражается через угловую скорость и момент инерции относительно оси, проходящей через центр масс C , перпендикулярно плоскости движения: .

Уравнения (Т1)-(Т3) ⇑ принимают вид:
(Т4) ;
(Т5) .
Здесь – проекции внешней силы на оси координат; – это алгебраический момент силы относительно центра C – то есть проекция момента силы на ось Oz .

Вращение твердого тела вокруг неподвижной оси

Рассмотрим вращение твердого тела вокруг неподвижной оси Oz . Выберем декартову систему координат. Ось Oz направим вдоль оси вращения; оси Ox и Oy – перпендикулярно. Считаем, что перемещение параллельно оси вращения отсутствует. Тогда это плоское движение. Оно происходит в плоскости Oxy . Положение тела определяется только углом поворота φ вокруг оси вращения.

Применяя теорему моментов ⇑ и связь момента с угловой скоростью ⇑, получим дифференциальное уравнение вращения твердого тела вокруг неподвижной оси:
(Т6) .
Здесь – момент инерции тела относительно оси вращения; – вращающий момент – то есть сумма моментов всех внешних сил относительно оси вращения.

Вводя угловое ускорение , дифференциальное уравнение вращения примет вид:
.
Оно аналогично уравнению прямолинейного движения под действием силы Fx :
.

Если вращающий момент является постоянной величиной: , то уравнение (Т6) имеет решение:
.
Здесь – угол поворота и угловая скорость вращения в начальный момент времени ; – угловое ускорение, постоянная величина.

Физический и математический маятники

Далее мы будем приводить данные только для плоского движения маятника. То есть мы считаем, что маятник совершает колебания вокруг неподвижной оси.

Уравнение вращательного движения физического маятника имеет вид:
.
Здесь ось вращения проходит через точку O ; φ – угол поворота между осью маятника и вертикальной прямой; JO – момент инерции маятника относительно оси вращения; P =mg – сила тяжести, действующая на маятник массы m ; a – расстояние от оси вращения O до центра масс C маятника; g – ускорение свободного падения. Введем обозначение: . Тогда
.

Рассмотрим малые колебания . При этом . И мы получаем уравнение гармонических колебаний:
.
Общее решение этого уравнения имеет вид:
.
Здесь – постоянные, которые определяются из начальных условий.

Во многих случаях удобно выразить общее решение уравнения малых колебаний через амплитуду α и начальную фазу колебаний β :
.
Величина k называется угловой частотой колебаний. Период колебаний: . Для малых колебаний, период не зависит от амплитуды. Этот результат является приближенным. При увеличении амплитуды такая зависимость появляется.

Математический маятник – это материальная точка, подвешенная на нерастяжимой невесомой нити, и совершающая колебания под действием силы тяжести. Математический маятник.

Математический маятник является частным случаем физического маятника. Пусть L – длина нити математического маятника. Его центр масс C находится в материальной точке: L = |OC| . Момент инерции: . Выразив силу тяжести P через массу m и ускорение свободного падения g , получим угловую частоту колебаний:
.

Теперь вернемся к физическому маятнику. Если положить , то частота физического маятника будет совпадать с частотой математического маятника длины L :
.

Приведенная длина физического маятника – это длина математического маятника, частота колебаний которого совпадает с частотой колебаний рассматриваемого физического маятника.
Центром качаний физического маятника называется точка K на оси физического маятника, находящаяся на расстоянии его приведенной длины от точки подвеса.

Свойство взаимности
Если физический маятник подвесить за центр качаний K , то его частота колебаний не изменится, а прежняя точка подвеса O станет центром качаний нового маятника.

Положение центра качания
Центр качаний всегда расположен ниже центра масс:
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Принцип Даламбера
Если в любой момент времени к каждой точке системы приложить силы инерции и реально действующие силы, то полученная система сил будет находиться в равновесии, и к ней можно применять уравнения статики.

Рассмотрим пример. Путь тело массы m совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
Превращается в задачу статики:
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил . Мы предполагаем, что эти моменты создают угловое ускорение εz . Далее мы вводим момент сил инерции M И = – Jz εz . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений.
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы – это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Общее уравнение динамики (принцип Даламбера — Лагранжа)

Принцип Даламбера — Лагранжа – это объединение принципа Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера — Лагранжа.
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики.

Уравнения Лагранжа

Число обобщенных координат n совпадает с числом степеней свободы системы.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + . + Qn δqn .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа – это уравнения движения механической системы в обобщенных координатах:

Здесь T – кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
А. П. Маркеев, Теоретическая механика, «Ижевская республиканская типография», 1999.
Н. Н. Никитин, Курс теоретической механики, «Высшая школа», 1990.
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.
А. А. Яблонский, Курс теоретической механики, часть 2, динамика «Высшая школа», 1986.

Автор: Олег Одинцов . Опубликовано: 20-07-2015 Изменено: 23-08-2019

Лекции по динамике

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Содержание
Лекция 1. Введение в динамику. Законы и аксиомы динамики материальной точки. Основное уравнение динамики. Дифференциальные и естественные уравнения движения. Две основные задачи динамики. Примеры решения прямой задачи динамики
Лекция 2. Решение обратной задачи динамики. Общие указания к решению обратной задачи динамики. Примеры решения обратной задачи динамики. Движение тела, брошенного под углом к горизонту, без учета сопротивления воздуха.
Лекция 3. Прямолинейные колебания материальной точки. Условие возникновения колебаний. Классификация колебаний. Свободные колебания без учета сил сопротивления. Затухающие колебания. Декремент колебаний.
Лекция 4. Вынужденные колебания материальной точки. Резонанс. Влияние сопротивления движению при вынужденных колебаниях.
Лекция 5. Относительное движение материальной точки. Силы инерции. Частные случаи движения для различных видов переносного движения. Влияние вращения Земли на равновесие и движение тел.
Лекция 6. Динамика механической системы. Механическая система. Внешние и внутренние силы. Центр масс системы. Теорема о движении центра масс. Законы сохранения. Пример решения задачи на использование теоремы о движении центра масс.
Лекция 7. Импульс силы. Количество движения. Теорема об изменении количества движения. Законы сохранения. Теорема Эйлера. Пример решения задачи на использование теоремы об изменении количества движения. Момент количества движения. Теорема об изменении момента количества движения..
Лекция 8. Законы сохранения. Элементы теории моментов инерции. Кинетический момент твердого тела. Дифференциальное уравнение вращения твердого тела. Пример решения задачи на использование теоремы об изменении момента количества движения системы. Элементарная теория гироскопа.
Рекомендуемая литература
1. Яблонский А.А. Курс теоретической механики. Ч.2. М.: Высшая школа. 1977 г. 368 с.
2. Мещерский И.В. Сборник задач по теоретической механике. М.: Наука. 1986 г. 416 с.
3. Сборник заданий для курсовых работ /Под ред. А.А. Яблонского. М.:Высшая школа. 1985 г. 366 с.
4. Бондаренко А.Н. “Теоретическая механика в примерах и задачах. Динамика” (электронное пособие www.miit.ru/institut/ipss/faculties/trm/main.htm ), 2004 г.

Лекция 1
Динамика – раздел теоретической механики,
изучающий механическое движение с самой общей точки
зрения. Движение рассматривается в связи с действующими
на объект силами.
Раздел состоит из трех отделов:

Динамика
материальной точки
Динамика
Динамика
механической системы
Аналитическая механика
■ Динамика точки – изучает движение материальной точки
с учетом сил, вызывающих это движение.
Основной объект — материальная точка – материальное тело, обладающей массой, размерами которого можно пренебречь.
Основные допущения:
– существует абсолютное пространство (обладает чисто геометрическими свойствами, не зависящими от материи и ее движения .
– существует абсолютное время (не зависит от материи и ее движения).
Отсюда вытекает:
– существует абсолютно неподвижная система отсчета.
– время не зависит от движения системы отсчета.
– массы движущихся точек не зависят от движения системы отсчета.
Эти допущения используются в классической механике, созданной Галилеем и Ньютоном. Она имеет до сих пор достаточно широкую область
применения, поскольку рассматриваемые в прикладных науках механические системы не обладают такими большими массами и скоростями
движения, для которых необходим учет их влияния на геометрию пространства, время, движение, как это делается в релятивистской механике
(теории относительности).
■ Основные законы динамики – впервые открытые Галилеем и сформулированные Ньютоном составляют основу всех методов описания и анализа движения механических систем и их динамического взаимодействия под действием различных сил.
■ Закон инерции (закон Галилея-Ньютона) – Изолированная материальная точка тело сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, приложенные силы не заставят ее изменить это состояние. Отсюда следует эквивалентность состояния покоя и движения по инерции (закон относительности Галилея). Система отсчета, по отношению к которой выполняется закон инерции, называется инерциальной. Свойство материальной точки стремиться сохранить неизменной скорость своего движения (свое кинематическое состояние) называется инертностью.
■ Закон пропорциональности силы и ускорения (Основное уравнение динамики — II закон Ньютона) – Ускорение, сообщаемое материальной точке силой, прямо пропорционально силе и обратно пропорционально массе этой точки: или

Здесь m – масса точки (мера инертности), измеряется в кг,
численно равна весу, деленному на ускорение свободного падения:

F – действующая сила, измеряется в Н (1 Н сообщает точке массой 1 кг ускорение 1 м/c2, 1 Н = 1/9.81 кг-с).
■ Динамика механической системы – изучает движение совокупности материальных точек и твердых тел, объединяемых общими законами
взаимодействия, с учетом сил, вызывающих это движение.
■ Аналитическая механика – изучает движение несвободных механических систем с использованием общих аналитических методов.
1

Лекция 1 (продолжение – 1.2)
Дифференциальные уравнения движения материальной точки:
— дифференциальное уравнение движения точки в векторном виде.
— дифференциальные
уравнения движения
точки в координатном
виде.
Этот результат может быть получен формальным проецированием векторного дифференциального уравнения (1).
После группировки
векторное соотношение
распадается
на три скалярных
уравнения:
В координатном виде: Используем связь радиуса-вектора с координатами
и вектора силы с проекциями:
или:
Подставим ускорение точки при векторном задании движения в основное уравнение динамики:
M(x,y,z)
O
Естественные уравнения движения материальной точки – получаются
проецированием векторного дифференциального
уравнения движения на естественные (подвижные)
оси координат: или:
— естественные
уравнения движения
точки.
M
O
M
■ Основное уравнение динамики :
— соответствует векторному способу задания движения точки.
■ Закон независимости действия сил – Ускорение материальной точки под действием нескольких сил равно геометрической сумме ускорений точки от действия каждой из сил в отдельности: или
Закон справедлив для любого кинематического состояния тел. Силы взаимодействия, будучи приложенные к разным точкам (телам)
не уравновешиваются.
■ Закон равенства действия и противодействия (III закон Ньютона) – Всякому действию соответствует равное по величине и противоположно направленное противодействие:

Две основные задачи динамики:
1. Прямая задача: Задано движение (уравнения движения, траектория). Требуется определить силы, под действием которых происходит заданное движение.
2. Обратная задача: Заданы силы, под действием которых происходит движение. Требуется найти параметры движения (уравнения движения, траекторию движения).
Обе задачи решаются с помощью основного уравнения динамики и проекции его на координатные оси. Если рассматривается движение несвободной точки, то как и в статике, используется принцип освобождаемости от связей. В результате реакции связей включаются в состав сил, действующих на материальную точку. Решение первой задачи связано с операциями дифференцирования. Решение обратной задачи требует интегрирования соответствующих дифференциальных уравнений и это значительно сложнее, чем дифференцирование. Обратная задача сложнее прямой задачи.

Решение прямой задачи динамики — рассмотрим на примерах:
Пример 1. Кабина весом G лифта поднимается тросом с ускорением a . Определить натяжение троса.

1. Выбираем объект (кабина лифта движется поступательно и ее можно рассматривать как материальную точку).
2. Отбрасываем связь (трос) и заменяем реакцией R.
3. Составляем основное уравнение динамики:
Определяем реакцию троса:
Определяем натяжение троса:
При равномерном движении кабины ay = 0 и натяжение троса равно весу: T = G.
При обрыве троса T = 0 и ускорение кабины равно ускорению свободного падения: ay = -g.
3
4. Проецируем основное уравнение динамики на ось y:
y
Пример 2. Точка массой m движется по горизонтальной поверхности (плоскости Oxy) согласно уравнениям: x = acoskt, y = bcoskt. Определить силу, действующую на точку.

y
x
x
y
1. Выбираем объект (материальную точку).
2. Отбрасываем связь (плоскость) и заменяем реакцией N.
3. Добавляем к системе сил неизвестную силу F.
4. Составляем основное уравнение динамики:
5. Проецируем основное уравнение динамики на оси x,y :
Определяем проекции силы:
Модуль
силы:
Направляющие косинусы:
Таким образом, величина силы пропорциональна расстоянию точки до центра координат и
направлена к центру по линии, соединяющей точку с центром.
Траектория движения точки представляет собой эллипс с центром в начале координат:
O
r
Лекция 1 (продолжение – 1.3)

Лекция 1 (продолжение 1.4)
Пример 3: Груз весом G подвешен на тросе длиной l и движется по круговой траектории в горизонтальной плоскости с некоторой скоростью. Угол отклонения троса от вертикали равен . Определить натяжение троса и скорость груза.
1. Выбираем объект (груз).
2. Отбрасываем связь (трос) и заменяем реакцией R.
3. Составляем основное уравнение динамики:
Из третьего уравнения определяем
реакцию троса:
Определяем натяжение троса:
Подставляем значение реакции
троса, нормального ускорения
во второе уравнение и
определяем скорость груза:
4. Проецируем основное уравнение динамики на оси ,n, b:
Пример 4: Автомашина весом G движется по выпуклому мосту (радиус кривизны равен R) со скоростью V. Определить давление автомашины на мост.
1. Выбираем объект (автомашина, размерами пренебрегаем и рассматриваем как точку).
R
2. Отбрасываем связь (шероховатую поверхность) и заменяем реакциями N и силой трения Fтр.
3. Составляем основное уравнение динамики:
4. Проецируем основное уравнение динамики на ось n:
Отсюда определяем нормальную реакцию:
Определяем давление автомашины на мост:
Отсюда можно определить скорость, соответствующую нулевому
давлению на мост (Q = 0):
4

Лекция 2
После подстановки найденных значений постоянных получаем:
Таким образом, под действием одной и той же системы сил
материальная точка может совершать целый класс движений,
определяемых начальными условиями.
Начальные координаты учитывают исходное положение точки. Начальная скорость, задаваемая проекциями, учитывает влияние на ее движение по рассматриваемому участку траектории сил, действовавших на точку до прихода на этот участок, т.е. начальное кинематическое состояние.
Решение обратной задачи динамики – В общем случае движения точки силы, действующие на точку, являются переменными, зависящими
от времени, координат и скорости. Движение точки описывается системой трех дифференциальных уравнений второго порядка:

После интегрирования
каждого из них будет
шесть постоянных
C1, C2,…., C6:
Значения постоянных C1, C2,…., C6
находятся из шести начальных
условий при t = 0:
Пример 1 решения обратной задачи: Свободная материальная точка массы m движется по действием силы F, постоянной по модулю и величине. . В начальный момент скорость точки составляла v0 и совпадала по направлению с силой. Определить уравнение движение точки.
1. Составляем основное уравнение динамики:
3. Понижаем порядок производной:
2. Выберем декартову систему отсчета, направляя ось x вдоль направления силы
и спроецируем основное уравнение динамики на эту ось: или
x
y
z
4. Разделяем переменные:
5. Вычисляем интегралы от обоих частей уравнения:
6. Представим проекцию скорости
как производную координаты по времени:
8. Вычисляем интегралы от обоих частей уравнения:
7. Разделяем переменные:
9. Для определения значений постоянных C1 и C2 используем начальные условия t = 0, vx = v0 , x = x0 :
В итоге получаем уравнение равнопеременного движения (по оси x):
5

Общие указания к решению прямой и обратной задачи. Порядок решения:
1. Составление дифференциального уравнения движения:
1.1. Выбрать систему координат – прямоугольную (неподвижную) при неизвестной траектории движения, естественную (подвижную) при известной траектории, например, окружность или прямая линия. В последнем случае можно использовать одну прямолинейную координату. Начало отсчета совместить с начальным положением точки (при t = 0) или с равновесным положением точки, если оно существует, например, при колебаниях точки.
6
1.2. Изобразить точку в положении, соответствующем произвольному моменту времени (при t > 0) так, чтобы координаты были положительными
(s > 0, x > 0). При этом считаем также, что проекция скорости в этом положении также положительна. В случае колебаний проекция
скорости меняет знак, например, при возвращении к положению равновесия. Здесь следует принять, что в рассматриваемый момент
времени точка удаляется от положения равновесия. Выполнение этой рекомендации важно в дальнейшем при работе с силами
сопротивления, зависящими от скорости.
1.3. Освободить материальную точку от связей, заменить их действие реакциями, добавить активные силы.
1.4. Записать основной закон динамики в векторном виде, спроецировать на выбранные оси, выразить задаваемые или реактивные силы
через переменные время, координаты или скорости, если они от них зависят.
2. Решение дифференциальных уравнений:
2.1. Понизить производную, если уравнение не приводится к каноническому (стандартному) виду. например: или
2.2. Разделить переменные, например: или
2.4. Вычислить неопределенные интегралы в левой и правой частях уравнения, например:
2.3. Если в уравнении три переменных,
то сделать замену переменных, например: и затем разделить переменные.
Замечание. Вместо вычисления неопределенных интегралов можно вычислить определенные интегралы с переменным верхним пределом.
Нижние пределы представляют начальные значения переменных (начальные условия) .Тогда не требуется отдельного нахождения постоянной,
которая автоматически включается в решение, например:
Используя начальные условия, например, t = 0, vx = vx0, определить постоянную интегрирования:
2.5. Выразить скорость через производную координаты по времени, например, и повторить пункты 2.2 -2.4
Замечание. Если уравнение приводится к каноническому виду, имеющему стандартное решение, то это готовое решение и используется.
Постоянные интегрирования по прежнему находятся из начальных условий. См., например, колебания (лекция 4, стр.8).
Лекция 2 (продолжение 2.2)

Лекция 2 (продолжение 2.3)
Пример 2 решения обратной задачи: Сила зависит от времени. Груз весом P начинает двигаться по гладкой горизонтальной поверхности
под действием силы F, величина которой пропорциональна времени (F = kt). Определить пройденное расстояние грузом за время t.
3. Составляем основное уравнение динамики:
5. Понижаем порядок производной:
4. Проецируем основное уравнение динамики на ось x : или
7
6. Разделяем переменные:
7. Вычисляем интегралы от обоих частей уравнения:
9. Представим проекцию скорости
как производную координаты по времени:
10. Вычисляем интегралы от обоих частей уравнения:
9. Разделяем переменные:
8. Определим значение постоянной C1
из начального условия t = 0, vx = v0=0:
В итоге получаем уравнение движения
(по оси x), которое дает значение
пройденного пути за время t:
1. Выбираем систему отсчета (декартовые координаты) так, чтобы тело имело положительную координату:
x
y
x
O
2. Принимаем объект движения за материальную точку (тело движется поступательно), освобождаем от связи
(опорной плоскости) и заменяем реакцией (нормальной реакцией гладкой поверхности):
11. Определим значение постоянной C2
из начального условия t = 0, x = x0=0:
Пример 3 решения обратной задачи: Сила зависит от координаты. Материальная точка массой m брошена вверх с поверхности Земли со скоростью v0. Сила притяжения Земли обратно пропорциональна квадрату расстояния от точки до центра тяготения (центра Земли). Определить зависимость скорости от расстояния y до центра Земли.
1. Выбираем систему отсчета (декартовые координаты) так, чтобы тело имело положительную координату:
x
y
y
O
2. Составляем основное уравнение динамики:
3. Проецируем основное уравнение динамики на ось y : или
Коэффициент пропорциональности можно найти, используя вес точки на поверхности Земли:
R
Отсюда дифференциальное
уравнение имеет вид: или
4. Понижаем порядок производной:
5. Делаем замену переменной:
6. Разделяем переменные:
7. Вычисляем интегралы
от обоих частей уравнения:
8. Подставляем
пределы:
В итоге получаем выражение
для скорости в функции
от координаты y :
Максимальную высоту
полета можно найти
приравнивая скорость нулю:
Максимальная высота полета 
при обращении знаменателя в нуль:
Отсюда при постановке радиуса Земли и ускорения
свободного падения
получается II космическая
скорость:

Лекция 2 (продолжение 2.4)
Пример 2 решения обратной задачи: Сила зависит от скорости. Судно массы m имело скорость v0. Сопротивление воды движению судна пропорционально скорости. Определить время, за которое скорость судна упадет вдвое после выключения двигателя, а также пройденное расстояние судном до полной остановки.
8
1. Выбираем систему отсчета (декартовые координаты) так, чтобы тело имело положительную координату:
x
y
x
O
2. Принимаем объект движения за материальную точку (судно движется поступательно), освобождаем от связей
(воды) и заменяем реакцией (выталкивающей силой – силой Архимеда), а также силой сопротивления движению.
3. Добавляем активную силу (силу тяжести).
4. Составляем основное уравнение динамики:
5. Проецируем основное уравнение динамики на ось x : или
6. Понижаем порядок производной:
7. Разделяем переменные:
8. Вычисляем интегралы
от обоих частей уравнения:
9. Подставляем
пределы:
Получено выражение, связывающее скорость и время t, откуда можно определить время движения:
Время движения, за которое
скорость упадет вдвое:
Интересно заметить, что при приближении скорости к нулю время движения стремится к бесконечности, т.е. конечная скорость не может
быть равна нулю. Чем не “вечное движение”? Однако, при этом пройденный путь до остановки является конечной величиной. Для определения пройденного пути обратимся к выражению, полученному после понижения порядка производной, и сделаем замену переменной:
После интегрирования и подстановки пределов получаем:
Пройденный путь
до остановки:
■ Движение точки, брошенной под углом к горизонту, в однородном поле силы тяжести без учета сопротивления воздуха
x
y
x
O
Исключив время из уравнений движения
получаем уравнение траектории:
Время полета определяем
приравниванием координаты y нулю:
Дальность полета определяем
подстановкой времени полета:

Лекция 3
Прямолинейные колебания материальной точки – Колебательное движение материальной точки происходит при условии: имеется восстанавливающая сила, стремящая вернуть точку в положение равновесия при любом отклонении ее из этого положения.

9
Восстанавливающая
сила есть,
положение равновесия
устойчивое
Восстанавливающей
силы нет,
положение равновесия
неустойчивое
Восстанавливающей
силы нет,
положение равновесия
безразличное
Восстанавливающая
сила есть,
положение равновесия
устойчивое
Необходим анализ
Сила упругости пружины – пример линейной восстанавливающей силы.
Направлена всегда к положению равновесия, величина прямо пропорциональна линейному
удлинению (укорочению) пружины, равному отклонению тела от положения равновесия:
с – коэффициент жесткости пружины, численно равный силе, под действием которой пружина изменяет свою длину на единицу, измеряется в Н/м в системе СИ.
x
y
O
Виды колебаний материальной точки:
1. Свободные колебания (без учета сопротивления среды).
2. Свободные колебания с учетом сопротивления среды (затухающие колебания).
3. Вынужденные колебания.
4. Вынужденные колебания с учетом сопротивления среды.
■ Свободные колебания – происходят под действием только восстанавливающей силы.
Запишем основной закон динамики:
Выберем систему координат с центром в положении равновесия (точке O)
и спроецируем уравнение на ось x :
Приведем полученное уравнение
к стандартному (каноническому) виду :
Данное уравнение является однородным линейным дифференциальным
уравнением II порядка, вид решения которого определяется корнями
характеристического уравнения, получаемое с помощью универсальной
подстановки:
Корни характеристического уравнения мнимые и равные:
Общее решение дифференциального
уравнения имеет вид:
Скорость точки:
Начальные условия:
Определим
постоянные:
Итак, уравнение свободных колебаний имеет вид:
Уравнение можно представить
одночленным выражением:
где a – амплитуда,  — начальная фаза.
Новые константы a и  — связаны
с постоянными C1 и C2 соотношениями:
Определим a и  :

x0=asin
T
Период колебаний:
a – амллитуда колебаний
Причиной возникновения свободных колебаний является начальное смещение x0 и/или начальная скорость v0.

10
Лекция 3 (продолжение 3.2)
Затухающие колебания материальной точки – Колебательное движение материальной точки происходит
при наличии восстанавливающей силы и силы сопротивления движению.
Зависимость силы сопротивления движению от смещения или скорости определяется физической природы
среды или связи, препятствующей движению. Наиболее простой зависимостью является линейная зависимость
от скорости (вязкое сопротивление):

 — коэффициент вязкости
x
y
O
Основное уравнение динамики:
Проекция уравнения динамики на ось:
Приведем уравнение к стандартному виду:
где
Характеристическое уравнение имеет корни:
Общее решение данного дифференциального уравнения имеет различный вид в зависимости от значений корней:

1. n k – случай большого вязкого сопротивления: — корни действительные, различные.
или
— эти функции апериодические:
x
t
x
t
3. n = k : — корни действительные, кратные.
эти функции также апериодические:

Лекция 3 (продолжение 3.3)
x
y
O
с1
с2
Классификация решений свободных колебаний.
x
t
x
t
Способы соединения пружин. Эквивалентная жесткость.
y
y
x
O
с1
с2
x
O
с1
с2
11

Лекция 4
Вынужденные колебания материальной точки – Наряду с восстанавливающей силой действует периодически изменяющаяся сила, называемая возмущающей силой.
Возмущающая сила может иметь различную природу. Например, в частном случае инерционное воздействие неуравновешенной массы m1 вращающегося ротора вызывает гармонически изменяющиеся проекции силы:

x
y
O
x
y
O
A


Основное уравнение динамики:
Проекция уравнения
динамики на ось:
Приведем уравнение
к стандартному виду:
12
Решение этого неоднородного дифференциального уравнения состоит их двух частей x = x1 + x2 : x1 – общее решение соответствующего
однородного уравнения и x2 – частное решение неоднородного уравнения:
Частное решение подбираем в форме правой части:
Полученное равенство должно удовлетворяться при любом t .

Тогда: или
Таким образом, при одновременном действии восстанавливающей и возмущающей сил материальная точка совершает сложное колебательное движение, представляющее собой результат сложения (наложения) свободных (x1) и вынужденных (x2) колебаний.
Если p k (вынужденные колебания большой частоты),
то фаза колебаний противоположна фазе возмущающей силы:

Лекция 4 (продолжение 4.2)
13
Коэффициент динамичности – отношение амплитуды вынужденных колебаний
к статическому отклонению точки под действием постоянной силы H = const:
Амплитуда
вынужденных колебаний:
Статическое отклонение можно найти из уравнения равновесия:
Здесь:
Отсюда:
Таким образом, при p k
(большая частота
вынужденных колебаний)
коэффициент динамичности:
0
1
2
3
3
2
1
Резонанс – возникает, когда частота вынужденных колебаний совпадает с частотой собственных колебаний (p = k). Это наиболее часто происходит при запуске и остановке вращения плохо сбалансированных роторов, закрепленных на упругих подвесках.
Дифференциальное уравнение колебаний при равенстве частот:
Частное решение в форме правой части взять нельзя, т.к. получится линейно зависимое решение (см. общее решение).

Общее решение:
Подставим в дифференциальное
уравнение:
Возьмем частное решение в виде и вычислим производные :
Таким образом, получено решение: или
Вынужденные колебания при резонансе имеют амплитуду неограниченно возрастающую пропорционально времени.
Влияние сопротивления движению при вынужденных колебаниях.
Дифференциальное уравнение при наличии вязкого сопротивления имеет вид:
Общее решение выбирается из таблицы (Лекция 3, стр. 11) в зависимости от соотношения n и к (посмотреть).
Частное решение возьмем в виде и вычислим производные :
Подставим в дифференциальное уравнение:
Приравнивая коэффициенты при одинаковых тригонометрических функциях получаем систему уравнений:
Возведением в степень обоих
уравнений и сложением их
получаем амплитуду
вынужденных колебаний:
Делением второго уравнения
на первое получаем сдвиг фазы вынужденных колебаний:
Таким образом, уравнение движения при вынужденных колебаний с учетом сопротивления движению, например при n R1):
6. Момент инерции тонкого цилиндра относительно оси симметрии ( t


источники:

http://infourok.ru/lekcii-po-dinamike-4784663.html