Основное уравнение динамики вращательного движения видеоурок 10 класс

Основное уравнение динамики вращательного движения видеоурок 10 класс

«Физика — 10 класс»

Угловое ускорение.

Ранее мы получили формулу, связывающую линейную скорость υ, угловую скорость ω и радиус R окружности, по которой движется выбранный элемент (материальная точка) абсолютно твёрдого тела, которое, вращается относительно неподвижной оси:

Мы знаем, что линейные скорости и ускорения точек твёрдого тела различны. В то же время угловая скорость всех точек твёрдого тела одинакова.

Угловая скорость — векторная величина. Направление угловой скорости определяется по правилу буравчика. Если направление вращения ручки буравчика совпадает с направлением вращения тела, то поступательное движение буравчика указывает направление вектора угловой скорости (рис. 6.1).

Однако равномерное вращательное движение встречается довольно редко. Гораздо чаще мы имеем дело с движением, при котором угловая скорость изменяется, очевидно, это происходит в начале и конце движения.

Причиной изменения угловой скорости вращения является действие на тело сил. Изменение угловой скорости со временем определяет угловое ускорение.

Bектор угловой скорости — это скользящий вектор. Независимо от точки приложения его направление указывает направление вращения тела, а модуль определяет быстроту вращения,

Среднее угловое ускорение равно отношению изменения угловой скорости к промежутку времени, за которое это изменение произошло:

При равноускоренном движении угловое ускорение постоянно и при неподвижной оси вращения характеризует изменение угловой скорости по модулю. При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость (рис. 6.2, а), а при уменьшении — в противоположную (рис. 6.2, б).

Так как угловая скорость связана с линейной скоростью соотношением υ = ωR, то изменение линейной скорости за некоторый промежуток времени Δt равно Δυ =ΔωR. Разделив левую и правую части уравнения на Δt, имеем или а = εR, где а — касательное (линейное) ускорение, направленное по касательной к траектории движения (окружности).

Если время измерено в секундах, а угловая скорость — в радианах в секунду, то одна единица углового ускорения равна 1 рад/с 2 , т. е. угловое ускорение выражается в радианах на секунду в квадрате.

Неравномерно движутся при запуске и остановке любые вращающиеся тела, например ротор в электродвигателе, диск токарного станка, колесо автомобиля при разгоне и др.

Момент силы.

Для создания вращательного движения важно не только значение силы, но также и точка её приложения. Отворить дверь, оказывая давление около петель, очень трудно, в то же время вы легко её откроете, надавливая на дверь как можно дальше от оси вращения, например на ручку. Следовательно, для вращательного движения существенно не только значение силы, но и расстояние от оси вращения до точки приложения силы. Кроме этого, важно и направление приложенной силы. Можно тянуть колесо с очень большой силой, но так и не вызвать его вращения.

Момент силы — это физическая величина, равная произведению силы на плечо:

M = Fd,
где d — плечо силы, равное кратчайшему расстоянию от оси вращения до линии действия силы (рис. 6.3).

Очевидно, что момент силы максимален, если сила перпендикулярна радиус-вектору, проведённому от оси вращения до точки приложения этой силы.

Если на тело действует несколько сил, то суммарный момент равен алгебраической сумме моментов каждой из сил относительно данной оси вращения.

При этом моменты сил, вызывающих вращение тела против часовой стрелки, будем считать положительными (сила 2), а моменты сил, вызывающих вращение по часовой стрелке, — отрицательными (силы 1 и 3) (рис. 6.4).

Основное уравнение динамики вращательного движения. Подобно тому как опытным путём было показано, что ускорение тела прямо пропорционально действующей на него силе, было установлено, что угловое ускорение прямо пропорционально моменту силы:

Пусть на материальною точку, движующуюся по окружности, действует сила (рис. 6.5). Согласно второму закону Ньютона в проекции на касательное направление имеем mак = Fк. Умножив левую и правую части уравнения на r, получим maкr = Fкr, или

Заметим, что в данном случае r — кратчайшее расстояние от оси вращения до материальной точки и соответственно точки приложения силы.

Произведение массы материальной точки на квадрат расстояния до оси вращения называют моментом инерции материальной точки и обозначают буквой I.

Таким образом, уравнение (6.1) можно записать в виде Iε = М, откуда

Уравнение (6.2) называют основным уравнением динамики вращательного движения.

Уравнение (6.2) справедливо и для вращательного движения твёрдого тела, имеющего неподвижную ось вращения, где I — момент инерции твёрдого тела, а М — суммарный момент сил, действующих на тело. В этой главе при расчёте суммарного момента сил мы рассматриваем только силы или их проекции, принадлежащие плоскости, перпендикулярной оси вращения.

Угловое ускорение, с которым вращается тело, прямо пропорционально сумме моментов сил, действующих на него, и обратно пропорционально моменту инерции тела относительно данной оси вращения.

Если система состоит из набора материальных точек (рис. 6.6), то момент инерции этой системы относительно данной оси вращения ОО’ равен сумме моментов инерции каждой материальной точки относительно этой оси вращения: I = m1r 2 1 + m2r 2 2 + . .

Момент инерции твёрдого тела можно вычислить, разделив тело на малые объёмы, которые можно считать материальными точками, и просуммировать их моменты инерции относительно оси вращения. Очевидно, что момент инерции зависит от положения оси вращения.

Из определения момента инерции следует, что момент инерции характеризует распределение массы относительно оси вращения.

Приведём значения моментов инерции для некоторых абсолютно твёрдых однородных тел массой m.

1. Момент инерции тонкого прямого стержня длиной l относительно оси, перпендикулярной к стержню и проходящей через его середину (рис. 6.7), равен:

2. Момент инерции прямого цилиндра (рис. 6.8), или диска относительно оси ОО’, совпадающей с геометрической осью цилиндра или диска:

3. Момент инерции шара радиусом R относительно оси, проходящей через его центр:

4. Момент инерции тонкого обруча радиусом R относительно оси, проходящей через его центр:

Момент инерции по физическому смыслу во вращательном движении играет роль массы, т. е. он характеризует инертность тела по отношению к вращательному движению. Чем больше момент инерции, тем сложнее тело заставить вращаться или, наоборот, остановить вращающееся тело.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Законы сохранения в механике — Физика, учебник для 10 класса — Класс!ная физика

Презентация по физике на тему»Динамика вращательного движения»(10 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Динамика вращательного движения

Быстрота вращательного движения характеризуется: 1)линейной скоростью ϑ; 2)угловой скоростью ω.

Правило буравчика(правого винта) ω ϑ Ось вращения

ω ϑ Ось вращения тела

Если угловая скорость изменяется , то появляется угловое ускорение ε = ∆ω ∆t

При увеличении угловой скорости ω ε

При уменьшении угловой скорости ω ε

ϑ = ω R ∆ϑ = ∆ω R ∆ϑ ∆ω ∆t ∆t R а = ε R

Тангенциальное ускорение(касательное ) а = ε R

Чтобы заставить тело вращаться , нужно приложить силу

Вращающий момент силы –величина М , равная произведению модуля силы на ее плечо М = F d 1 Н · м

Плечо силы d – кратчайшее расстояние от линии действия силы до оси вращения d F O

О Линия действия силы F1 F2 d1 d2 т.О- точка опоры ℓ1 — плечо силы F1 ℓ2 — плечо силы F2 F1:F2 = d2 :d1 Правило рычага

Угловое ускорение прямо пропорционально вращающему моменту силы

F m О r ma=F mar = Fr mεr = M 2

Момент инерции материальной точки относительно оси вращения J = m r 2

Основное уравнение динамики вращательного движения ε = М J

Чем больше момент инерции тела , тем труднее заставить его вращаться

Основное уравнение динамики вращательного движения ε = М J

Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.

Масса и момент импульса постоянные

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 924 человека из 80 регионов

Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 20 человек из 11 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Курс добавлен 23.11.2021
  • Сейчас обучается 35 человек из 23 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 580 316 материалов в базе

Материал подходит для УМК

«Физика. Механика (углублённый уровень)», Мякишев Г.Я., Синяков А.З.

§ 7.6. Другая форма уравнения движения материальной точки по окружности

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 26.12.2020
  • 315
  • 4

  • 26.12.2020
  • 129
  • 9

  • 26.12.2020
  • 181
  • 5
  • 26.12.2020
  • 101
  • 2

  • 26.12.2020
  • 111
  • 3

  • 26.12.2020
  • 135
  • 0

  • 26.12.2020
  • 62
  • 0

  • 26.12.2020
  • 123
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 26.12.2020 995
  • PPTX 4.7 мбайт
  • 190 скачиваний
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Коновалова Наталья Дмитриевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 1 месяц
  • Подписчики: 20
  • Всего просмотров: 453214
  • Всего материалов: 147

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

В Швеции запретят использовать мобильные телефоны на уроках

Время чтения: 1 минута

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Вращательные движение твердого тела

Презентация к уроку

Так случилось в истории науки, что в познании законов вращательного движения человечество проигрывает по сравнению с познанием законов поступательного движения. История развития представлений о вращательном движении полна драматизма – это драма идей и личностей, стоящих за ними.

Вращательное движение чрезвычайно широко распространено в природе: вращаются галактики, планеты и планетные системы, на планетарном уровне достаточно интенсивные вращательные движения проявляются в виде циклонов в атмосферах Земли, Сатурна, Юпитера, замкнутых течений в мировом океане Земли и др.

Вращательные движения являются характерным и неотъемлемым (внутренним) свойством материи галактик. Вращаются все галактики – спиралевидные, эллиптические, неправильные: массивная центральная часть галактики совершает твердотельное вращение с постоянной скоростью и периодом, а звёзды, расположенные в пределах её “хвоста”, вращаются с переменными периодами в гравитационном поле её центральной области в полном соответствии с третьим законом Кеплера. Наша Галактика, относящаяся к наиболее обширному классу спиралевидных галактик, имеет в районе Солнца линейную скорость вращения около 220 – 250 км/с. Вращение других спиральных галактик обычно составляет 100 – 300 км/с.

На звёздном уровне вращательное движение распространено не меньше, чем на галактическом. В нашей солнечной системе на протяжении нескольких миллиардов лет планеты вращаются вокруг Солнца, их спутники – вокруг планет, а сами планеты – вокруг собственных осей. Подобных планетных систем только в нашей Галактике может насчитываться миллионы. По состоянию на конец 2011 года открыто 584 планетных системы [Jean Schneider. Interactive Extra-solar Planets Catalog].

Согласно последним данным, галактики образуют скопления, сверхскопления, ячеистые структуры, на которые, по всей видимости, распространяется всё сказанное о вращательном движении во Вселенной.

Единство природы прослеживается во всём пространственно-временном масштабе от макро- до микромира: вращение присуще всем материальным объектам Вселенной от галактик до элементарных частиц.

Если проследить историю развития представлений о природе вихревых движений материи, то будет несложно заметить, что по мере развития и совершенствования знаний о Вселенной происходит возврат на новом качественном уровне к идее Декарта-Канта-Лапласа об абсолютности вращательного движения. Авторы гипотезы Гамова-Вейцмана связывают природу вихревого движения материи во Вселенной с процессами, объясняющими её рождение — вращение могло быть “придано” материи в момент Большого взрыва.

Благодаря успехам астрономии в настоящее время с достаточно высокой точностью определены размеры, масса, моменты и средняя плотность планет и спутников, скорость их вращения вокруг Солнца и собственной оси, но целая группа фактов не находит правдоподобного объяснения [1]:

А. Орбиты планет почти круговые, лежат в одной плоскости и их обращение (у большинства из них и вращение) происходит в одном направлении с вращением Солнца.

В. Планеты распределены явно не случайным образом, в их расстояниях от Солнца есть закономерность, описываемая известным правилом Тициуса-Боде.

С. Разделение планет на две резко различающиеся группы: внутренние планеты — Меркурий, Венера, Земля и Марс — сравнительно небольшие, но с большей плотностью, более медленным вращением, с малым числом спутников (или без них) и внешние планеты — Юпитер, Сатурн, Уран, Нептун — большие по размерам, меньшей плотности, с большей скоростью вращения и многочисленными спутниками.

Д. Распределение момента количества движения: в то время как в Солнце сосредоточено более 99% всей массы солнечной системы, на него приходится менее 2% момента количества движения, остальные 98% принадлежат планетам.

Е. Вариации химического состава планет и спутников, существование разных типов метеоритов и астероидов, комет, изотопные данные.

Понимание природы вихревых движений во всём масштабе движений может привести к появлению новых физических представлений о свойствах пространства – времени.

Изучение закономерностей вращательного движения содействует формированию научного мировоззрения обучающихся и, в силу широкого использования законов вращательного движения в технике, политехническому образованию.

Формирование основных понятий вращательного движения твёрдого тела в школьном курсе физики, являясь достаточно трудной задачей, требует особого подхода. Изучение кинематики, динамики, законов сохранения момента импульса и энергии для вращающихся тел целостным блоком, с опорой на аналогию с поступательным движением твёрдого тела и криволинейным движением материальной точки и разъяснением глубинной нетождественности этих движений способствует формированию целостного представления о вращательном движении. Использование метода аналогии в данном случае оправданно и призвано мобилизовать рефлексивно-личностные ресурсы обучающихся. Иллюстрация многочисленных примеров проявления закономерностей кинематики и динамики вращательного движения, законов сохранения момента импульса и энергии в природе, технике, быту необходима для анализа роли вращательного движения в физической модели мира. Использование последовательной съёмки движущихся тел служит усилению наглядности проявления особенностей вращательного движения твёрдого тела.

Разработка урока по теме “Вращательное движение твёрдого тела” была опубликована в Интернете на портале “Мой университет” по адресу www.edu-reforma.ru

Приложение: презентация интерактивной лекции по теме “Вращательное движение твёрдого тела”.


источники:

http://infourok.ru/prezentaciya-po-fizike-na-temu-dinamika-vrashatelnogo-dvizheniya-10-klass-4711454.html

http://urok.1sept.ru/articles/637614