Основное уравнение эйлера для насоса

Теоретический напор насоса, формула Эйлера

Во вращающемся рабочем колесе на частицы жидкости действует центробежная сила:

F= m ω 2 R = ρ∙V∙ ω 2 R

Где Fц- центробежная сила

V – объем частиц

ω- угловая скорость

R- радиус рабочего колеса

В результате этого в центре колеса падает давление, создается разрежение, а на периферии колеса давление повышается, тем самым создается напор.

Движение жидкости в межлопаточных каналах вращающегося колеса можно рассматривать как результат сложения двух движений: переносного (вращение колеса) и относительного (движе­ние относительно колеса).

Поэтому вектор абсолютной скоростижидкости в колесе V может находиться как сумма векторов окруж­ной скорости U и относительной скорости W.

При этом относительная скоростьWнаправлена по касательной к лопатке, а окружнаяU по касательной к соответствующей окружности.

Параллелограмм скоростей можно построить для лю­бой точки на лопатке.

Если все величины, относящиеся к входу на лопатку, отмечать индексом 1, а величины, относящиеся к выходу, — индексом 2, а угол между векторами скоростей окружной и абсолютной обо­значим через a, а между касательной к лопатке и касательной к окружности колеса, проведенной в сторону, обратную вращению, — через b ,то можно получить формулу для расчета теоретического напора (формула Эйлера)

(12)

Для вывода основного уравнения теории центробежного насоса принимают следующие два допущения:

1. Насос имеет бесконечно большое число одинаковых лопаток (z=¥), а толщина этих лопаток равна нулю (b=0). Это допущение означает, что мы предполагаем в межлопаточных кана­лах колеса такое струйное течение, при котором форма всех струек в относительном движении совершенно одинакова и точно соответ­ствует форме лопаток, а скорости зависят только от радиуса и не меняются на окружности данного радиуса. Это положение может иметь место лишь в том случае, когда каждая элементарная струйка направляется своей лопаткой.

2. Коэффициент полезного действия насоса равен единице (h=1), т.е. в насосе отсутствуют все виды потерь энергии и, сле­довательно, вся мощность, которая затрачивается на вращение колеса, целиком передается жидкости Такая работа насоса возможна лишь при перекачке идеальной жидкости, при отсутствии зазоров в насосе, а также при отсутствии механического трения в сальниках и подшипниках

Такой насос, у которого z=¥ и h=1, называетсяидеальным центробежным насосом.

Обычно жидкость подходит к рабочему колесу насоса без предварительной закрутки, а войдя в колесо, вступает в межло­паточные каналы, двигаясь радиально Это значит, что вектор V1 направлен по радиусу, а угол a1=90°. Следовательно, второй член в уравнении делается равным нулю и уравнение прини­мает вид

Эта форма уравнения Эйлера более употребительна.

Реальное колесо центробежного насоса имеет Z=4-8, a2 = 5 — 10 0 , b2 = 20 — 40 0 .

В этом случае поток в относительном движении уже не следует строго по направлению лопаток, что проводит к снижению теоретического напора НТ по сравнению с НТ∞..

где: К — поправка на коническое число лопаток,

Коэффициент К = 0,6 — 0,8 и зависит от кинематики и конструкции колеса.

Формула показывает, что для получения с помощью центробежного насоса больших напоров нужно иметь,

во-первых, большую окружную скорость вращения колеса и,

во-вторых, достаточную закрутка потока жидкости колесом.

Первое достигается соответствующими значениями числа оборотов и диаметра колеса, а второе — достаточным числом лопаток, их размером и формой.

Уравнение Эйлера

Жидкость, перекачиваемая под действием центробежной силы насосом, при прохождении через межлопаточные пространства (каналы) рабочего колеса приобретает как потенциальную, так и кинетическую энергию.

На рис. 2.25 изображена схема изменения направления скоростей на рабочем колесе при входе жидкости на рабочую лопатку и выходе с нее. Энергия в потоке жидкости увеличивается в результате силового воздействия лопаток колеса на жидкость и соответствующего расхода энергии двигателя, приводящего насос в действие. Напор, развиваемый насосом, может характеризовать удельную энергию, т. е. энергию, приобретенную единицей массы жидкости.


Рис. 2.25. Схема изменения направления скоростей на рабочем колесе насоса

Эйлер вывел уравнение для определения теоретического напора при следующих допущениях: а) перекачиваемая жидкость является идеальной (при ее протекании через проточную часть насоса исключаются гидравлические сопротивления); б) рассматриваемый насос имеет бесконечно большое число лопаток, благодаря чему все частицы жидкости движутся внутри колеса по одинаковым траекториям, имеющим очертания лопаток.

Бесконечное число лопаток дает бесконечно узкий канал для прохода жидкости и обеспечивает ламинарный характер течения жидкости, что упрощает построение векторной диаграммы на выходе. Допустим, что за 1 с через колесо протекает масса жидкости т. При входе в лопаточное колесо частица жидкости получает окружную скорость направленную по касательной к окружности входных кромок и равную u1 = 0,5ωD1, где ω — угловая скорость колеса насоса (по часовой стрелке); D1 — диаметр внутренней окружности колеса. Кроме того, жидкость получает относительную скорость ω1 которая направлена по касательной к контуру лопатки от положения входа.

Абсолютная скорость с1 может быть найдена построением параллелограмма, сторонами которого являются векторы скорости u1 и ω1. После того как частица жидкости совершила путь вдоль лопаток колеса, при выходе она будет иметь окружную скорость u2, направленную по касательной к наружному контуру колеса, и относительную ω2, направленную по касательной к контуру лопатки. Построив параллелограмм, можно найти абсолютную скорость выхода с2. Напор Ht∞ (t — идеальная жидкость; ∞ — бесконечно большое число лопаток) определяется на основании закона, известного из теоретической механики, по которому приращение момента количества движения материальной системы относительно данной оси за некоторый промежуток времени равно моменту импульса всех внешних сил за тот же промежуток времени (например, за 1 с).

Количество движения массы жидкости при входе равно произведению массы на скорость F1 = mc1, а при выходе F2 = mс2. Момент количества движения массы жидкости при входе равен 0,5mc1D1 cos α1, момент количества движения массы жидкости при выходе 0,5mc2D2 cos α2, где α1, α2 — углы между направлениями абсолютной и окружной скоростей. Момент импульса внешних сил равен разности моментов количества движения М = 0,5 (mc2D2 cos α2 — mc1D1 cos α1). Для упрощения обе части уравнения умножим на угловую скорость и разделим на массу, а левую часть разделим и умножим на ускорение свободного падения:
Mωg/(mg) = 0,5 (ωc2D2 cos α2 — mc1D1 cos α1. (2.6)
Известно, что мощность равна произведению угловой скорости и момента импульса внешних сил: N = ωМ. Если мощность выразить через теоретический напор, то она равна N = mgHt∞, откуда
Ht∞ = N/(mg). (2.7)
Заменяя в уравнении (2.6) произведение Мω на N и помня, что u1 = 0,5ω1D1 и u2 = 0,5ω2D2, получаем N/(mg) = (c2u2 cos α2 —с1u1 cos α1)/g. С учетом равенства (2.7) теоретический напор определится из выражения Ht∞ = (c2u2 cos α2 — c1u1 cos α1)/g.

Полный теоретический напор равен сумме статического и динамического напоров: Ht∞ = Hст + Hдин. Это очевидно из другого уравнения Эйлера, полученного через уравнение Бернулли: Ht∞ = Hст + Hдин = (n2 — u1)/(2g) + (w1 — w2)/(2g) + (c2—c1)/(2g).

Так как проекция абсолютной скорости на направление окружной скорости u2 представляет собой тангенциальную составляющую абсолютной выходной скорости с2, то она вычисляется по выражению c2u = с2 cos a2. Ввиду того что у большинства центробежных насосов отсутствуют направляющие аппараты при входе жидкости на лопатки и во избежание больших гидравлических потерь от ударов жидкости о лопатки угол ах принято выбирать равным 90°. Но cos 90° = 0, следовательно, c1u1 cos а1 = = 0. Таким образом, получаем основное уравнение центробежного насоса, или уравнение Эйлера:
Ht∞ = u2c2 cos a2/g = u2c2u/g. (2.8)
Основные уравнения для получения теоретического напора Ht в центробежном насосе были получены при условии, что траектория каждой частицы жидкости, движущейся по рабочему колесу, совпадает с профилем лопатки. Это было бы возможно лишь в том случае, когда каждая элементарная струйка направлялась бы двумя бесконечно тонкими лопатками, которых потребовалось бы бесконечно большое число. В действительном насосе число лопаток ограничено и они имеют определенную толщину. Это приводит к искажению треугольников скоростей, пересечению струек жидкости и образованию различных завихрений. Затраты на эти потери энергия снижают создаваемый напор на величину коэффициента φ = 1/<1 + 2 /z·1/[1 — (γ1/γ2)2]>, где ψ — технологический коэффициент, который зависит от степени обработки проточной части и угла β2 между направлениями относительной и окружной скоростей, находится по соотношению ψ= (0,55÷0,65) + 0,6 sin β1 ≈ 0,8÷1,3; z = 6÷9 — число лопастей судового насоса.

Для получения действительного напора необходимо учитывать также потери на преодоление гидравлических сопротивлений в насосе. Тогда (2.8) может быть преобразована в формулу действительного напора Hд = Ht∞φηr=u2c2uφηr/g.

Центробежные насосы

В центробежном насосе, схематическое изображение которого представлено на рис. 3.1, передача энергии осуществляется за счет силового взаимодействия лопастного аппарата рабочего колеса с жидкостью.

Рис. 3.1. Схема рабочего колеса центробежного насоса

В межлопаточных каналах рабочего колеса частицы жидкости участвуют в сложном движении. Вектор абсолютной скорости частицы может быть представлен суммой переносной (окружной) скорости и относительной скорости

.

Относительная скорость частицы в любой точке профиля лопатки направлена по касательной к нему, а переносная – по касательной к окружности рабочего колеса.

Абсолютную скорость раскладывают на окружную Viu и меридианную (нормальную по отношению к окружной скорости) V составляющие, которые рассчитывают по следующим формулам

где i=1, 2. Индекс «1» соответствует параметрам жидкости на входе в рабочее колесо, а «2» – на выходе из него.

Основное уравнение турбомашин (турбинное уравнение Эйлера)

Основное уравнение турбомашин связывает геометрические и кинематические характеристики рабочего колеса с развиваемым им напором. При его выводе принимают, что траектория частиц жидкости в межлопаточных каналах повторяет очертания профиля лопасти.

Вывод основан на теореме момента количества движения: при установившемся течении в равномерно вращающемся канале изменение во времени главного момента количества движения частиц жидкости, равно главному моменту действующих на них внешних сил

, (3.1)

где W – объем жидкости в канале; Mo – главный момент внешних сил относительно оси вращения.

Производная физической величины по времени включает локальную и конвективную составляющие. В случае стационарности физической величины локальная производная по времени отсутствует. В /12/ приводится доказательство того, что конвективная производная по времени от интеграла некоторой величины, взятого по движущемуся объему, равна переносу той же величины сквозь контрольную поверхность.

Неподвижную в пространстве поверхность, ограничивающую в данный момент времени, рассматриваемый движущийся объем, называют контрольной поверхностью. Перемещаясь в пространстве, жидкий объем протекает сквозь свою контрольную поверхность. Произведение физической величины, например, , представляющей момент количества движения единицы объема жидкости, на объемный расход среды сквозь элементарную площадку , ориентированную в соответствии с ортом нормали n, определяет перенос рассматриваемой физической величины через эту площадку.

Для нашего случая это приводит к следующему выражению

. (3.2)

Контрольной поверхностью для жидкости, находящейся в межлопаточном пространстве рабочего колеса насоса (см. рис. 3.1), является поверхность, образованная боковыми поверхностями лопаток Sб и поверхностями колеса на входе S1 и выходе S2 из него жидкости. Интеграл, стоящий в правой части уравнения представим в виде суммы интегралов по всем составляющим поверхностям. Интеграл через боковые поверхности равен нулю, поскольку отсутствует нормальная составляющая вектора скорости к этой поверхности. Интегралы через поверхность жидкости на входе и выходе из колеса имеют разные знаки, поскольку орты нормалей к этим поверхностям (n1 и n2) ориентированы в противоположные стороны (внутрь и наружу) относительно объема жидкости, находящейся в межлопаточном пространстве. На основании этого сделаем следующие преобразования

Численное значение последнего интеграла равно

,

где – окружная составляющая вектора абсолютной скорости жидкой частицы; – объемный расход жидкости, проходящей через каналы рабочего колеса.

Объединив полученное выражение с уравнениями (3.1) и (3.2), получим

. (3.3)

К внешним силам, действующим на жидкость, находящуюся в канале рабочего колеса, относят силы давления, трения, тяжести и силы взаимодействия с ней стенок канала. Анализ показывает, что равнодействующие сил давления на внутренней и внешней образующих колеса проходят через ось вращения. Поэтому момента они не создают. Силы тяжести из-за симметрии рабочего колеса уравновешаны, а силы трения, действующие по периферийным поверхностям вращения малы. На этом основании предполагают, что момент создают только силы, возникающие от взаимодействия стенок рабочих каналов с жидкостью, находящейся в них.

Этот момент внешних сил связан с гидравлической мощностью насоса Nг и угловой скоростью вращения w следующим соотношением

.

Подставляя найденные величины в (3.3), получим основное уравнение турбомашин (турбинное уравнение Эйлера)

. (3.4)

Уравнение Эйлера связывает теоретический напор насоса со скоростями движения жидкости, которые зависят от подачи насоса, угловой скорости вращения рабочего колеса, а также с его геометрическими характеристиками.

Поток на входе в рабочее колесо создается предшествующим ему устройством (подводом). Следовательно, момент скорости (закрутка) определяется конструкцией подвода. Подводящие устройства многих насосов не закручивают поток и момент скорости на входе равен нулю. В этом случае теоретический напор определится по следующему уравнению

, (3.5)

где – окружная скорость на периферии колеса.

,

где n – частота вращения, об/мин,

а окружная составляющая абсолютной скорости на выходе из колеса, (см. рис.3.1), определяется выражением

,

уравнение для теоретического напора примет вид

. (3.6)

Это уравнение показывает, что напор зависит от величины меридианной составляющей абсолютной скорости на выходе из колеса, которая связана с подачей насоса уравнением

, (3.7)

где b2 – ширина канала рабочего колеса на выходе.

Анализ уравнения Эйлера позволяет сделать следующие выводы:

× в выражение теоретического напора не входит вес жидкости. Следовательно, развиваемый насосом напор не зависит от рода перекачиваемой жидкости;

× при скорости движения газа значительно меньшей скорости распространения звука в нем, газ ведет себя как капельная жидкость. В связи с этим полученное уравнение справедливо и для газов;

× на величину напора, а, следовательно, и на работу центробежного насоса значительное влияние оказывает форма лопастей рабочего колеса, особенно угол наклона их на выходе b2. Высокие значения КПД можно получить лишь при оптимальном значении этого угла.

Рис.3.2. Типы лопастей рабочих колес

На рис. 3.2 представлены схемы рабочих колес с различно изогнутыми лопастями: с лопастями, загнутыми назад b2 o ; с радиальными лопастями b2=90 o ; с лопастями, загнутыми вперед b2>90 o .

В высокоэкономичных насосах, у которых гидравлические потери минимальны, применяют рабочие колеса с лопатками, загнутыми назад, причем угол b2 назначают в пределах диапазона (15…30) о .

Уравнение (3.5) показывает, что в случае равенства нулю окружной составляющей абсолютной скорости на выходе из колеса , напор также равен нулю. Из плана скоростей (см. рис.3.1) видно, что это имеет место при некотором угле , при котором . Приравняв в формуле (3.6) напор к нулю, найдем

.

Для лопастей, у которых b2=90 о , , следовательно

.

Для лопаток, загнутых вперед, с увеличением b2 растет абсолютная скорость на выходе из колеса, что приводит к росту напора. При очень больших абсолютных скоростях режим работы насоса становится неустойчивым и КПД насоса уменьшается вследствие возрастания гидравлических сопротивлений. Однако колеса с большими углами b2 имеют меньшие радиальные размеры или частоту вращения при том же напоре.

На рисунке справа представлена зависимость теоретических напоров от угла b2.

Величина входного угла определяется из условия безударного входа жидкости на лопасть колеса. Так как жидкость при входе в межлопаточное пространство движется в радиальном направлении, то угол . В этом случае

.

В используемых на практике рабочих колесах с лопатками загнутыми назад угол наклона на входе b1 принимают равным (14…25) о .

Число лопаток должно быть таким, чтобы каждая последующая лопатка своим выходным концом перекрывала входной конец предыдущей. Число лопаток определяют по следующей формуле

.

Дата добавления: 2015-01-29 ; просмотров: 66 ; Нарушение авторских прав


источники:

http://www.stroitelstvo-new.ru/sudostroenie/mehanizm/uravnenie-eilera.shtml

http://lektsii.com/1-94907.html

Читайте также:
  1. Аксиально-поршневые насосы
  2. Б). Горизонтальные одноступенчатые насосы типа «Д».
  3. Винтовые насосы.
  4. Вихревые насосы
  5. Водокольцевые вакуумные насосы.
  6. Возможности взаимозаменяемости по группе погружные и артезианские насосы
  7. Глава 2. Пожарные насосы
  8. Динамические насосы
  9. Крыльчатые насосы.
  10. Многоступенчаты насосы типа ЦНС