Основное уравнение массопередачи в фазе у

Лекция № 11 Процесс массопередачи

Массопередача – это сложный процесс, включающий перенос вещества (массы) в пределах одной фазы, перенос через поверхность раздела фаз и его перенос в пределах другой фазы. Как известно, при теплопередаче обменивающиеся теплотой среды в большинстве случаев разделены твердой стенкой, в то время как массопередача происходит обычно через границу раздела соприкасающихся фаз. Эта граница может быть либо подвижной (массопередача в системах газ-жидкость или пар-жидкость, жидкость-жидкость), либо неподвижной (массопередача с твердой фазой).

массоотдача – это перенос вещества из фазы к границе раздела фаз или в обратном направлении, т. е. в пределах только одной фазы.

Виды процессов массопередачи. В промышленности применяются в основном следующие процессы массопередачи:

1. Абсорбция — поглощение газа жидкостью, т. е. процесс разделения, характеризуемый переходом вещества из газовой фазы в жидкую.

2. Экстракция (в системе жидкость-жидкость) — извлечение вещества, растворенного в жидкости, другой жидкостью, практически несмешивающейся или частично смешивающейся с первой. При этом извлекаемый компонент исходного раствора переходит из одной жидкой фазы в другую.

8. Перегонка — разделение гомогенных жидких смесей путем взаимного обмена компонентами между жидкостью и паром, полученным испарением разделяемой жидкой смеси.

4. Адсорбция — поглощение компонента газа, пара или раствора твердым пористым поглотителем, т. е. процесс разделения, характеризуемый переходом вещества из газовой (паровой) или жидкой фазы в твердую.

5. Сушка — удаление влаги из твердых материалов, главным образом путем ее испарения.

6. Кристаллизация — выделение твердой фазы в виде кристаллов из растворов или расплавов.

7. Растворение и экстракция (в системе твердое тело — жидкость).

Процессы массопередачи можно разделить на две группы.

К одной группе относятся процессы (абсорбция, экстракция и др.), в которых участвуют минимально три вещества: одно находится только в одной фазе, другое — только во второй фазе, а третье — переходит из одной фазы в другую и представляет собой распределяемое между фазами вещество.

К другой группе относятся процессы (например, перегонка), в которых вещества, составляющие две фазы, обмениваясь компонентами, сами непосредственно участвуют в массопередаче и уже не могут рассматриваться как инертные носители распределяемого вещества.

Скорость массообменных процессов, как правило, лимитируется молекулярной диффузией. Поэтому процессы массопередачи иногда называют диффузионными процессами.

Равновесие при массопередаче

Правило фаз. Знание равновесия в процессах массопередачи позволяет установить пределы, до которых могут протекать эти процессы. В основе равновесия лежит известное правило фаз:

Ф + С = К + 2, (1)

где Ф — число фаз; С — число степеней свободы, т. е. число независимых переменных, значения которых можно произвольно изменять без нарушения числа или вида (состава) фаз в системе; К — число компонентов системы.

Правило фаз указывает число параметров, которое можно менять произвольно (в известных пределах) при расчете равновесия в процессах масообмена.

Зависимости между независимыми переменными могут быть изображены в плоских координатах в виде так называемых фазовых диаграмм. В расчетах по массопередаче используют диаграммы зависимости давления от концентрации (при t = const), температуры от концентрации (при Р = const) и диаграммы зависимости между равновесными концентрациями фаз, приведенные ниже.

Фазовое равновесие. Линия равновесия. Рассмотрим в качестве примера процесс массопередачи, в котором аммиак, представляющий собой распределяемый компонент, поглощается из его смеси с воздухом чистой водой, т. е. ввиду отсутствия равновесия переходит из газовой фазы Фу, где его концентрация равна у, в жидкую фазу Фх, имеющую начальную концентрацию х = 0. С началом растворения аммиака в воде начнется переход части его молекул в обратном направлении со скоростью, пропорциональной концентрации аммиака в воде и на границе раздела фаз. С течением времени скорость перехода аммиака в воду будет снижаться, а скорость обратного перехода возрастать, причем такой двусторонний переход будет продолжаться до тех пор, пока скорости переноса в обоих направлениях не станут равны друг другу. При равенстве скоростей установится динамическое равновесие, при котором не будет происходить видимого перехода вещества из фазы в фазу.

При равновесии достигается определенная зависимость между предельными или равновесными концентрациями распределяемого вещества в фазах для данных температуры и давления, при которых осуществляется процесс массопередачи.

В условиях равновесия некоторому значению отвечает строго определенная равновесная концентрация в другой фазе, которую обозначим через . Соответственно концентрация у отвечает равновесная концентрация . В самом общем виде связь между концентрациями распределяемого вещества в фазах при равновесии выражается зависимостью:

или . (2)

Любая из этих зависимостей изображается графически линией равновесия, которая либо является кривой, как показано на рис. 1, либо в частном случае — прямой линией. На рис. 1, а показана равновесная кривая для системы с компонентами-носителями, выражающая зависимость равновесной концентрации, например в газовой фазе, от концентрации жидкой фазы при Р = const и t = const. На рис. 1, б приведен пример равновесной кривой для процесса ректификации, построенной при Р = const. Каждая точка кривой, как показано на рисунке, соответствует разным температурам (t1, t2 и т. д.).

Отношение концентраций фаз при равновесии называется коэффициентом распределения . Для разбавленных растворов линия равновесия близка к прямой, и т является практически величиной постоянной, равной тангенсу угла наклона линии равновесия.

Конкретный вид законов равновесного распределения различен для разных процессов массопередачи. Так, например, в процессе абсорбции при низких концентрациях распределяемого вещества в исходном растворе равновесие описывается законом Генри для идеальных растворов в процессах ректификации — законом Рауля и т. д.

Зная линию равновесия для конкретного процесса и рабочие, т. е. неравновесные, концентрации фаз в соответствующих точках, можно определить направление и движущую силу массопередачи в любой точке аппарата. На основе этих данных может быть рассчитана средняя движущая сила, а по ней — скорость процесса массопередачи.

Материальный баланс. Рабочая линия. Рабочие концентрации распределяемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений.

Зависимость между рабочими концентрациями распределяемого вещества в фазах изображается линией, которая носит название рабочей линии процесса. Вид функции или уравнение рабочей линии в его общем виде, является одинаковым для всех массообменных процессов и получается из их материальных балансов.

Рассмотрим схему массообменного аппарата, работающего в режиме идеального вытеснения при противотоке фаз (рис. 2). Пусть в процессе массопередачи из фазы в фазу, например из газовой фазы в жидкую, переходит только один распределяемый компонент (скажем, аммиак).

Сверху в аппарат поступает Lн кг/с одной фазы (жидкой), содержащей вес. долей распределяемого компонента, а снизу из аппарата удаляется Lк кг/с той же фазы, содержащей вес. долей распределяемого компонента. Снизу в аппарат поступает кг/с другой фазы (газовой) концентрацией и сверху удаляется кг/с этой фазы, имеющей концентрацию вес. долей распределяемого компонента.

Тогда материальный баланс по всему веществу

, (3)

и материальный баланс по распределяемому компоненту

. (4)

Теперь напишем уравнения материального баланса для части аппарата от его нижнего конца до некоторого произвольного сечения, для которого расходы фаз составляют G и L кг/с, а их текущие концентрации равны и соответственно.

Материальный баланс по всему веществу

, (5)

и материальный баланс по распределяемому компоненту

. (6)

Решая это уравнение относительно , получим

. (7)

Уравнение (7) представляет собой уравнение рабочей линии, выражающее связь между рабочими концентрациями распределяемого компонента в фазах для произвольного сечения аппарата.

Расходы фаз постоянны по высоте аппарата, например в процессах ректификации, когда числа молей компонентов, которыми обмениваются фазы, равны. В других случаях, если концентрации фаз мало изменяются по высоте аппарата, то расходы фаз по его высоте можно с достаточной для практических целей точностью считать постоянными, т. е. принять L = const и G = const. При этом Lк = L, Gн = G и уравнение (7) приводится к виду

. (8)

Вводя обозначения и , находим

. (9)

Выражения (8) и (9) являются уравнениями рабочей линии, которыми обычно пользуются при расчетах массообменных процессов.

Таким образом, рабочая линия представляет собой прямую, которая наклонена к горизонту под углом, тангенс которого равен А, и отсекает на оси ординат отрезок, равный В. Рабочая линия для всего аппарата ограничена точками с координатами и (верхний конец аппарата, рис. 3) и и (нижний конец аппарата).

Скорость массопередачи

Скорость массопередачи связана с механизмом переноса распределяемого вещества в фазах между которыми происходит массообмен.

Перенос вещества внутри фазы может происходить только путем молекулярной диффузии либо путем конвекции и молекулярной диффузии одновременно. Посредством одной молекулярной диффузии вещество перемещается, строго говоря, лишь в неподвижной среде. В движущейся среде перенос вещества осуществляется как молекулярной диффузией, так и самой средой в направлении ее движения или отдельными ее частицами в разнообразных направлениях.

В турбулентном потоке перенос молекулярной диффузией преобладает только вблизи границы фазы. При турбулентном течении возникают нерегулярные пульсации скорости, под действием которых, наряду с общим движением потока, происходит перемещение частиц во всех направлениях, в том числе и в поперечном.

Конвективный перенос вещества, осуществляемый под действием турбулентных пульсаций, часто называют турбулентной диффузией.

Молекулярная диффузия. Молекулярной диффузией называется перенос распределяемого вещества, обусловленный беспорядочным тепловым движением молекул, атомов, ионов, коллоидных частиц. Молекулярная диффузия описывается первым законом Ф и к а, согласно которому масса вещества dМ, продиффундировавшего за время dt через элементарную поверхность dF (нормальную к направлению диффузии), пропорциональна градиенту концентрации этого вещества

или . (1)

Из выражения (1) следует, что удельный поток вещества, переносимого молекулярной диффузией через единицу поверхности (F = 1) в. единицу времени (t = 1), или скорость молекулярной диффузии, составляет

. (2)

По своей структуре закон Фика аналогичен закону Фурье, описывающему передачу тепла теплопроводностью, причем аналогом градиента температур является в данном случае градиент концентраций, представляющий собой изменение концентрации диффундирующего вещества на единицу длины нормали между двумя поверхностями постоянных, но различных концентраций.

Коэффициент пропорциональности D в выражении закона Фика называется коэффициентом молекулярной диффузии, или просто коэффициентом диффузии. Знак минус перед правой частью первого закона Фика указывает на то, что молекулярная диффузия всегда протекает в направлении уменьшения концентрации распределяемого компонента.

Согласно уравнению (1), коэффициент диффузии выражается как:

откуда (до сокращения одноименных величин) вытекает физический смысл D. Коэффициент диффузии, показывает, какая масса вещества диффундирует в единицу времени через единицу поверхности при градиенте концентрации, равном единице.

Коэффициент молекулярной диффузии представляет собой физическую константу, характеризующую способность данного вещества проникать вследствие диффузии в неподвижную среду. Величина D таким образом не зависит от гидродинамических условий, в которых протекает процесс.

Турбулентная диффузия. Масса вещества dMт, переносимого в пределах фазы вследствие турбулентной диффузии, может быть принята, по аналогии с молекулярной диффузией, пропорциональной поверхности dF, времени dt и градиенту концентрации и определяется по, уравнению

, (3)

где — коэффициент турбулентной диффузии.

Коэффициент турбулентной диффузии показывает какая масса вещества передается посредством турбулентной диффузии в единицу времени через единицу поверхности при градиенте концентрации, равном единице.

Коэффициент выражается в тех же единицах, что и коэффициент молекулярной диффузии D, т. е. в м2/с. Однако в отличие от D коэффициент турбулентной диффузии не является физической константой; он зависит от гидродинамических условий, определяемых в основном скоростью потока и масштабом турбулентности.

Конвективный перенос. Скорость конвективного, переноса вещества вместе с самой средой в направлении, совпадающем с направлением общего потока, равна

, (4)

где v — скорость потока жидкости, газа или пара; С — коэффициент пропорциональности.

Суммарный перенос вещества вследствие конвективного переноса и молекулярной диффузии, по аналогии с теплообменом, называют конвективным массообменом или конвективной диффузией.

Распределение концентрации при переносе путем конвективной диффузии определяется в самом общем виде дифференциальным уравнением конвективной диффузии.

Дифференциальное уравнение конвективной диффузии. Выделим в потоке данной фазы элементарный параллелепипед с ребрами dx, dy и dz, ориентированными относительно осей координат, как показано на рис. 1. Рассмотрим материальный баланс по распределяемому веществу для параллелепипеда в наиболее общем случае неустановившегося массообмена. Будем считать, что процесс переноса происходит в условиях установившегося движения потока фазы. Распределяемое вещество проходит сквозь грани параллелепипеда как путем конвективного переноса, так и молекулярной диффузии.

Обозначим концентрацию распределяемого вещества в плоскости левей грани параллелепипеда площадью dydz через с и проекции скорости на оси координат для данного элемента (точки) потока — через , и , соответственно.

Тогда масса вещества, поступающего только путем конвективной диффузии через площадь dydz, т. е. в направлении оси х, за время dt составит

. (5)

На противоположной грани параллелепипеда скорость в направлении оси х равна и концентрация распределяемого вещества составляет . Следовательно, за время dt через противоположную грань параллелепипеда выходит путем конвективной диффузии:

. (6)

Разность между массами вещества, прошедшего через противоположные грани параллелепипеда за время dt в направлении оси х, равна

, (7)

где dV = dx dy dz — объем элементарного параллелепипеда. Аналогично в направлении осей у и z:

и . (8)

Таким образом, содержание распределяемого вещества в объеме параллелепипеда изменится за время dt вследствие перемещения вещества только путем конвективной диффузии на величину

или в развернутом виде

. (9)

Согласно уравнению неразрывности потока для установившегося движения фазы

. (10)

Следовательно, предыдущее выражение dMк примет вид

. (11)

Масса распределяемого вещества, поступающего в параллелепипед только путем молекулярной диффузии через грань dy dz за время dt составляет

. (12)

Масса вещества, выходящего за то же время путем молекулярной диффузии через противоположную грань,

. (13)

Разность между массами продиффундировавшего через противоположные грани параллелепипеда вещества в направлении оси х за время dt равна

. (14)

Аналогично в направлении осей у и z:

и . (15)

Масса распределяемого вещества в объеме всего параллелепипеда за время dt изменится при переносе путем молекулярной диффузии на величину

. (16)

В результате изменение массы распределяемого вещества во времени в объеме параллелепипеда

. (17)

Изменение массы распределяемого вещества за счет конвективной и молекулярной диффузии в объеме параллелепипеда по закону сохранения массы должно равняться соответствующему изменению массы этого вещества во времени, т. е.

. (19)

Проводя соответствующие сокращения и перегруппировывая члены этого уравнения, получим

(20)

или в более краткой записи

. (20, а)

Уравнение (20) представляет собой дифференциальное уравнение конвективной диффузии. Оно выражает закон распределения концентрации данного компонента в движущейся стационарно среде при неустановившемся процессе массообмена.

Уравнение (20) по структуре аналогично дифференциальному уравнению конвективного теплообмена (уравнению Фурье-Кирхгофа). Отличие состоит в том, что в уравнение (20) вместо температурного градиента входит градиент концентрации, а вместо коэффициента температуропроводности а — коэффициент молекулярной диффузии D.

Для частного случая установившегося массообмена уравнение (20) принимает вид:

. (21)

При массообмене в неподвижной среде = = = 0, а конвективная составляющая в левой части уравнения (19) равна нулю, и уравнение обращается в дифференциальное уравнение молекулярной диффузии.

. (22)

Уравнение (22) носит название второго закона Фика. В дифференциальном уравнении конвективной диффузии, помимо концентрации, переменной является скорость потока. Поэтому данное уравнение надо рассматривать совместно с дифференциальными уравнениями гидродинамики: уравнениями Навье-Стокса и уравнением неразрывности потока. Однако эта система уравнений не имеет аналитического решения, и для получения расчетных зависимостей по массообмену приходится прибегать к преобразованию дифференциального уравнения конвективной диффузии методами теории подобия.

Ввиду сложности механизма процессов массоотдачи в фазах для практических целей принимают, что скорость массоотдачи пропорциональна движущей силе, равной разности концентраций в ядре и на границе фазы или (в случае обратного направления переноса) разности концентраций на границе и в ядре фазы. Соответственно, если распределяемое вещество переходит из фазы Фу в фазу Фх, то основное уравнение массоотдачи, определяющее количеством М вещества, переносимого в единицу времени в каждой из фаз (к границе фазы или в обратном направлении), выражается следующим образом:

(1)

, (1, а)

входящие в эти уравнения разности концентраций и представляют собой движущую силу процесса массоотдачи соответственно в фазах Фу и Фх, причем и — средние концентрации в основной массе (ядре) каждой из фаз, и — концентрации у границы соответствующей фазы.

Коэффициенты пропорциональности в уравнениях (1) и (1, а) называются коэффициентами массоотдачи. Коэффициенты массоотдачи (в фазе Фх и (в фазе Фу) показывают, какая масса вещества переходит от поверхности раздела фаз в ядро фазы: или в обратном направлении) через единицу поверхности в единицу времени при движущейся силе, равной единице.

Коэффициент массоотдачи является не физической константой, а кинетической характеристикой, зависящей от физических свойств фазы (плотности, вязкости и др.) и гидродинамических условий в ней (ламинарный или турбулентный режим течения), связанных в свою очередь с физическими свойствами фазы, а также с геометрическими факторами, определяемыми конструкцией и размерами массообменного аппарата, Таким образом, величина является функцией многих переменных, что значительно осложняет расчет или опытное определение коэффициентов массоотдачи. Значениями последних учитывается как молекулярный, так и конвективный перенос вещества в фазе.

По своему смыслу коэффициент массоотдачи является аналогом коэффициента теплоотдачи в процессах переноса тепла, а основное уравнение массоотдачи идентично по структуре основному уравнению теплоотдачи.

Коэффициент массоотдачи может быть выражен в различных единицах в зависимости от выбора единиц для массы распределяемого вещества и движущей силы. Если принять, что масса вещества выражена в килограммах, то в общей форме коэффициент массоотдачи выразится следующим образом:

При этом единица измерения р в каждом конкретном случае будет связана с единицами, принятыми для выражения движущей силы (табл. Х-1).

Подобие процессов переноса массы. Наиболее строгий и принципиально возможный путь для определения коэффициентов массоотдачи, заключается в интегрировании уравнения диффузии в движущейся среде (Х,19) совместно с уравнениями движения, т. е. с уравнениями Навье-Стокса и уравнением неразрывности потока при заданных начальных и граничных условиях.

Однако система указанных уравнений практически не имеет общего решения. Поэтому так же, как для гидродинамических и теплообменных процессов, не решая системы основных уравнений, можно методами теории подобия найти связь между переменными, характеризующими процесс переноса в потоке фазы, в виде обобщенного (критериального) уравнения массоотдачи.

Общая функциональная зависимость Nu’ от определяющих критериев и симплексов подобия для неустановившихся процессов массоотдачи может быть выражена как

. (13)

Для установившихся процессов массоотдачи условие равенства критериев Fo’ в сходственных точках подобных потоков отпадает н приведенные выше обобщенные зависимости принимают вид:

. (14)

Расчетная зависимость типа уравнения (13 и 14) называется обобщенным или критериальным уравнением массоотдачи.

Как отмечалось, процесс массопередачи включает процессы массоотдачи в пределах каждой из двух взаимодействующих фаз и, кроме того, процесс переноса распределяемого вещества через поверхность раздела фаз. Сложность расчета процесса связана с тем, что практически невозможно измерить концентрации фаз непосредственно у границы их раздела. Учитывая это, основное уравнение массопередачи, определяющее массу М вещества, переносимого из фазы в фазу в единицу времени (нагрузку аппарата), выражают следующим образом:

, (1)

, (2)

где у*, х* — равновесные концентрации в данной фазе, соответствующие концентрациям распределяемого вещества в основной массе (ядре) другой фазы; Ку, Кх— коэффициенты и массопередачи, выраженные соответственно через концентрации фаз Фу и Фх.

Коэффициент массопередачи (Kу или Кх) показывает, какая масса вещества переходит из фазы в фазу за единицу времени через единицу поверхности контакта фаз при движущей силе массопередачи, равной единице.

По физическому смыслу коэффициенты массопередачи отличаются от коэффициентов массоотдачи, но выражены в одинаковых с ними единицах измерения. Таким образом, коэффициенты массопередачи могут выражаться в м/с, кг/(м2 с); кг/(м2 с мол доли) и в с/м.

Концентрации фаз изменяются при их движении вдоль поверхности раздела, соответственно изменяется движущая сила массопередачи. Поэтому в уравнение массопередачи вводят величину средней движущей силы ( или ). Тогда уравнения (1) и (2) принимают вид:

, (3)

. (4)

С помощью уравнений (3) и (4) обычно находят поверхность контакта фаз F и по ней рассчитывают основные размеры аппарата. Для определения F необходимо предварительно рассчитать коэффициент массопередачи Kу или Кх и среднюю движущую силу. Величина М либо задается при расчете, либо определяется из материального баланса.

Зависимость между коэффициентами массопередачи и массоотдачи. Чтобы установить связь между коэффициентом массопередачи и коэффициентами массоотдачи, обычно принимают, что да границе раздела фаз см. рис. 5) достигается равновесие. Это предположение равносильно допущению о том, что сопротивлением переносу через границу раздела фаз можно пренебречь. Отсюда вытекает, как следствие, положение об аддитивности фазовых сопротивлений, которое является одной из предпосылок для расчета коэффициента массопередачи. Допустим, что распределяемое вещество переходит из фазы Фу в фазу Фх, и движущая сила массопередачи выражается в концентрациях фазы Фу. При установившемся процессе массопередачи количество вещества, переходящее из фазы в фазу, определим по уравнению (1).

Для упрощения рассмотрим случай, когда равновесная зависимость % между концентрациями в фазах линейна, т. е. линия равновесия описывается уравнением у* = m x, где т – тангенс угла наклона линии равновесия. После ряда преобразований получаем

(9)

При выражении коэффициента массопередачи в концентрациях фазы Фх аналогичные рассуждения приводят к зависимости

, (10)

Левые части уравнений (9) и (10) представляют собой общее сопротивление переносу вещества из фазы в фазу, т. е. сопротивление массопередаче, а их правые части — сумму сопротивлений массоотдаче в фазах. Поэтому зависимости (9) и (10) являются уравнениями аддитивности фазовых сопротивлений.

При т = const уравнение (10) можно получить, разделив уравнение (9) на т. Отсюда следует, что величины Kу и Kх связаны зависимостью Kу = Kх/m.

Уравнения аддитивности (9) и (10) выведены для линейной равновесной зависимости, но они остаются в силе и для кривой линии равновесия.

Основное уравнение массопередачи

Массообменные процессы. Фазовое равновесие

В химической технологии многие процессы связаны с переходом вещества из одной фазы в другую. Такие процессы называются массообменными. Эти процессы еще называются диффузионными, поскольку такой переход обусловлен скоростью диффузии вещества.

К массообменным процессам в химической технологии относятся:

Абсорбция и адсорбция – это сорбционные процессы, связанные с разделением газовых и парогазовых смесей путем избирательного поглощения одного или нескольких компонентов. В случае абсорбции – поглотитель – жидкость. В случае адсорбции – твердый поглотитель. В случае абсорбции происходит массообмен между газом и жидкостью; в случае адсорбции – между газом и твердым телом.

Ректификация – процесс разделения жидких смесей, состоящих из нескольких компонентов, обладающих различной упругостью паров, основанный на многократном противоточном взаимодействии жидкости и пара. При ректификации происходит массо — и теплообмен между паровой и жидкой фазами.

Экстракция — процесс разделения смеси компонентов, входящих в состав твердой или жидкой фаз, путем обработки их жидким растворителем, способным полностью или частично извлекать один из компонентов. В данном случае массообмен происходит между твердой и жидкой фазами (экстракция из твердого тела) или между жидкими фазами (жидкостная экстракция).

Кристаллизация и растворение твердых веществ. При кристаллизации происходит массообмен в направлении от жидкого раствора к твердому телу – кристаллу, а при растворении – от твердого тела к жидкости (раствору).

Сушка – процесс удаления влаги из влажных материалов за счет подводимой извне тепловой энергии. При сушке происходит массопередача влаги из влажного материала в окружающую газовую среду.

Фазовое равновесие

Переход вещества из одной фазы в другую в направлении достижения равновесия называется массопередачей.

Под равновесием понимается такое состояние между фазами, когда в единицу времени из первой фазы во вторую переходят столько же молекул вещества, сколько из второй в первую.

Правило фаз. Существование данной фазы в равновесии с другими возможно лишь при вполне определенных условиях и определяется правилом фаз. Эти условия (температура, концентрация), при которых система находится в равновесии, могут меняться.

Будем называть компонентом системы каждое из находящихся в ней химических однородных веществ, которое выделяется из нее и может существовать самостоятельно длительное время. Компоненты системы, наименьшее число которых достаточно для образования всех фаз данной системы, называется независимыми компонентами.

Для процесса массопередачи на равновесие системы влияют только 2 внешних фактора – температура и давление, и правило фаз записывается следующим образом: C = K – Ф + 2,

С – число степеней свободы или минимальное число факторов, которые можно изменять независимо друг от друга без нарушения равновесия системы.

Ф – число фаз системы;K – число независимых компонентов системы.

В зависимости от числа степеней свободы, системы могут быть:

1 безвариантными – С=0;

2 одновариантными С=1;

3 двухвариантными С=2 ;

4 многовариантными С >2.

Для систем, состоящих из 2 или более числа компонентов, их состояние и равновесие зависят от температуры, Р и количественного состава фаз.

Двухкомпонентная система, состоит из двух фаз, имеет две степени свободы (С=2 – 2 + 2 = 2), т.е. для нее без нарушения равновесия фаз можно менять одновременно t-ру и Р. В том случае, если один из этих факторов принять постоянным (t-ру или Р), то состояние равновесия между фазами будет характеризоваться лишь величиной другого переменного фактора и составом фаз. Так, например, при Р=const каждой температуре будет соответствовать строго определенный состав фаз.

Закон Генри

Равновесный состав фаз в системах газ-жидкость характеризуется равновесным распределением растворимого газа между инертным газом и растворяющей жидкостью и определяется для идеальных газов по закону Генри.

,

где: р– парциальное давление газа над раствором; х – молярная доля газа в растворе; Е – константа Генри (имеет размерность давления). Закон Генри формулируется следующим образом:

Парциальное давление растворенного идеального газа пропорционально его молярной доле в растворе, или

растворимость идеального газа в жидкости при данной t-ре пропорциональна его парциальному давлению над раствором.

(*)

Если у* — молярное равновесное содержание растворимого газа в газовой смеси и Р – общее давление газа, то парциальное давление р будет равно:

, подставим в (*), получим

, откуда ,

где mкоэффициент распределения или константа фазового равновесия (безразмерная величина).

Фазовое равновесие между раствором идеального газа в жидкости и газовой смесью над ней подчиняется закону Генри только при t > t критических (для газа).

Поскольку при сильном разбавлении любой раствор приближается к идеальным, то закон Генри применим и к разбавленным растворам, при этом он работает тем точнее, чем выше разбавление.

По этой же причине закон Генри достаточно точно описывает равновесие для плохо растворимых газов.

Для газов со сравнительно высокой растворимостью закон Генри справедлив лишь при низких концентрациях; при высоких концентрациях растворимость ниже, чем это следует из закона Генри.

Закон Рауля. При температурах газа ниже критической система будет двухфазной: жидкость – насыщенный пар.

Равновесие в этом случае характеризуется составом жидкости х и составом находящегося в равновесии с жидкостью пара у*.

Равновесие фаз для жидких идеальных растворов описывается законом Рауля: – парциальное давление любого компонента в парах над смесью жидкостей равно упругости насыщенного пара этого компонента (при данной температуре) умноженной на его молярную долю в жидкости.

,

pa– парциальное давление пара компонента а над смесью жидкостей;

Рa – давление насыщенного пара компонента а при t — ре смеси,

х – молярная доля компонента а в жидкой смеси.

Для любого компонента его парциальное давление можно определить:

и следовательно равновесный состав пара над жидкостью:

;

Р – общее давление паров над жидкой смесью.

Основное уравнение массопередачи

В массообменных процессах вещество путем диффузии переходит из одной фазы в другую, причем компонент, который переходит называется распределяемым веществом.

Основной характеристикой массообменных процессов является скорость массопередачи, которая представляет собой количество распределяемого вещества М(кг), переходящего из одной фазы в другую через единицу поверхности соприкосновения фаз F(м ²) в единицу времени , т.е.

.

Скорость процесса массопередачи пропорциональна его движущей силе, которая равна разности концентраций

, где у– концентрация распределяемого вещества в первой фазе, откуда вещество уходит;

у * — концентрация распределяемого вещества у поверхности раздела фаз (со стороны первой фазы), при которой бы существовало равновесие с концентрацией второй фазы х.

Т.о. скорость массопередачи = ; R-диффузионное сопротивление переносу вещества. — коэффициент массопередачи. Т.к. концентрации фаз в ходе процесса меняются, то изменяется и . Поэтому вводится понятие средней движущей силы .

— основное уравнение массопередачи, где М-нагрузка аппарата. В условиях стационарного процесса .

Из основного уравнения массопередачи: Коэффициент массопередачиэто количество вещества, переданного из одной фазы в другую через единицу поверхности в единицу времени при движущей силе равной единице.

Движущая сила одного и того массообменного процесса может быть выражена разностью концентраций и по другой фазе:

, которая будет иметь другую численную величину. Основное уравнение массопередачи в данном случае: ,

— коэффициент массопередачи, отнесенный ко 2 фазе. Он имеет другое численное значение, но тот же физический смысл. Следовательно, можно записать (поскольку слева одно и тоже значение М): , отсюда .

Чаще всего в массообменных аппаратах поверхность соприкасающихся фаз практически неопределима (например: жидкость с газовыми пузырями). Поэтому основное уравнение массопередачи (ОУМП) применяют в виде

, , где V-рабочий объём аппарата;

— объёмные коэффициенты массопередачи.

Объёмные коэффициенты массопередачипредставляют собой количество вещества переданного из одной фазы в другую в единице рабочего объёма аппарата в единицу времени при движущей силе=1.

Из основного уравнения массопередачи определяется поверхность массопередачи или объём рабочей зоны аппарата .

Дата добавления: 2017-10-04 ; просмотров: 2124 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Лекция 4. Основы массопередачи

4.1. Общие сведения о массообменных процессах

Технологические процессы, скорость протекания которых определяется скоростью переноса вещества из одной фазы в другую, называются массообменными, а аппараты, в которых происходят эти процессы – массообменными аппаратами.

В массообменном аппарате могут производиться разнообразные процессы. Основными и важнейшими из них являются абсорбция, ректификация, экстракция, кристаллизация, адсорбция, сушка, ионнообменные процессы и мембранное разделение.

Абсорбцией называется процесс разделения, основанный на избирательном поглощении газов или паров жидкими поглотителями – адсорбентами. Этот процесс применяется во многих производствах, в которых из смеси газов необходимо извлечь какое-либо вещество или комплекс веществ. В процессе абсорбции имеет место переход вещества или группы веществ из газовой (паровой) фазы в жидкую. Обратный процесс называется десорбцией.

Ректификацией называется процесс разделения смеси жидкостей, имеющих различные температуры кипения при соответствующем давлении, на чистые или обогащенные составляющие в результате противоточного движения потоков пара и жидкости. Процесс имеет большое значение в тех производствах, в которых необходимо частичное или полное разделение жидких однородных смесей на чистые компоненты или их группы. В процессе ректификации имеет место переход вещества или группы веществ из жидкой фазы в паровую, и наоборот.

Экстракцией называется процесс разделения, основанный на извлечении растворенного в одной жидкости вещества или группы веществ, другой жидкостью, которая не смешивается или только частично смешивается с первой. Процесс применяется в тех случаях, когда из раствора необходимо извлечь растворенное вещество или группу веществ. В этом процессе имеет место переход вещества из одной жидкой фазы в другую жидкую фазу.

Адсорбцией называется процесс разделения, основанный на избирательном поглощении газов, паров или растворенных в жидкостях веществ, твердым пористым поглотителем – адсорбентом, способным поглощать одно или несколько веществ из их смеси. Процесс используется в тех производствах, где из смеси газов, паров или растворенных веществ необходимо извлечение того или иного вещества. В этом процессе вещества переходят из газовой или жидкой фаз в твердую. Ионнообменный процесс представляет собой процесс извлечения вещества из раствора, основанный на способности некоторых твердых веществ (ионитов) обменивать свои подвижные ионы на ионы извлекаемого вещества. Процесс применяется для извлечения веществ, находящихся в растворах, в малых концентрациях. В этом процессе вещества переходят из жидкой фазы в твердую.

Сушкой называется процесс удаления влаги из твердых влажных материалов путем ее испарения. Процесс необходим для тех производств, в которых влажные природные вещества предварительно до их переработки или готовые вещества в последней стадии производства должны быть обезвожены. В этом процессе имеет место переход влаги из твердого влажного материала в паровую или газовую фазу.

Кристаллизацией называется процесс разделения, основанный на выделении вещества из жидкой фазы в виде твердой фазы (кристаллов). Процесс имеет место в тех случаях, где требуется получение веществ повышенной чистоты. В этом процессе происходит переход вещества из жидкой фазы в твердую фазу. Обратный процесс – растворение.

Мембранное разделение основано на способности определенных тонких пленок (полупроницаемых мембран) пропускать одни вещества и задерживать другие. В этом процессе вещества переходят через полупроницаемую мембрану из исходной жидкости или газа в выделяемую жидкую или газовую фазу.

Из краткой характеристики следует, что для всех массообменных процессов характерным является переход вещества из одной фазы в другую, или массопередача.

Процессы массопередачи делятся на две группы. К одной группе процессов относятся (например, перегонка, кристаллизация), в которых минимально два вещества, составляющие две фазы, обмениваются компонентами, и непосредственно сами участвуют в массопередаче. В другой группе процессов в большинстве случаев в массопередаче участвуют три вещества: распределяющее вещество (или вещества), составляющие первую фазу; распределяющее вещество (или вещества), составляющие вторую фазу; распределяемое вещество (или вещества), которое переходит из одной фазы в другую. К этой группе относятся процессы: абсорбции, экстракции, адсорбции, сушки.

Одну фазу обозначим буквой G, другую L, а распределяемый компонент М. Поскольку все массообменные процессы обратимы, то распределяемое вещество может переходить в зависимости от концентрации этого вещества в распределяющих фазах из фазы G в фазу L и, наоборот.

Представим для первой группы процессов массопередачи, что распределяемое вещество находится вначале только в фазе G и имеет концентрацию . В фазе L в начальный момент распределяемого вещества нет и, следовательно, концентрация его в этой фазе =0.

Если распределяющие фазы привести в соприкосновение, начнется переход распределяемого вещества из фазы G в фазу L, и, в жидкой фазе появится распределяемый компонент с концентрацией отличной от нуля. С момента появления вещества М в фазе L начинается обратный переход его в фазу G. До некоторого момента времени число частиц М, переходящих в единицу времени через единицу поверхности фазового контакта из фазы G в фазу L, больше, чем число частиц, переходящих обратно из фазы L в фазу G.

Через определенный промежуток времени скорости перехода распределяемого вещества из фазы G в фазу L и обратно становятся одинаковыми. Такое состояние называется равновесным. В состоянии равновесия существует строго определенная зависимость между концентрациями распределяемого вещества в фазах, которые при равновесии системы называются равновесными.

Любой концентрации соответствует равновесная концентрация ( ), и наоборот, любой концентрации соответствует равновесная концентрация ( ), т.е. имеют место зависимости вида:

или .

Условия равновесия и равновесные зависимости могут быть выражены не только через концентрации, но и через другие параметры, например, энтальпии, химический потенциал.

Знание равновесных концентраций позволяет установить направление течения процесса, которое определяется стремлением к равновесию. Если > и, следовательно, , распределяемое вещество М будет переходить из фазы G в фазу L. При условии 3 фазы — мольная объемная концентрация; в кг распределяемого компонента/м 3 фазы — массовая объемная концентрация.

Вполне очевидно, что в зависимости от способа выражения концентраций численное значение движущей силы меняется. Между концентрациями существует связь, которая может быть получена в виде простых математических соотношений из физического смысла концентраций.

Например, если рассматривать смесь состоящую из двух компонентов А и В, то связь массовых долей с мольными, и наоборот, определяется по следующим зависимостям:

; .

Соответственно связь относительных массовых и массовых долей

,

объемных концентраций и массовых долей

.

4.1.1. Основное уравнение массопередачи

Основной закон массопередачи, исходя из общих кинетических закономерностей, формулируется следующим образом: скорость (интенсивность) процесса прямо пропорциональна движущей силе и обратно пропорциональна сопротивлению процесса

, (4.1)

где — количество вещества, перешедшего из одной фазы в другую;

— элементарная поверхность фазового контакта; — промежуток времени; — движущая сила процесса ( или , или разность, выраженная через другие концентрации ); — сопротивление процессу.

Если вместо принять обратную величину коэффициент скорости процесса (коэффициент массопередачи) и записать уравнение относительно количества вещества, перешедшего из одной фазы в другую

. (4.2)

Уравнения (4.1) и (4.2) называют основными уравнениями массопередачи.

В аппаратуре, используемой для проведения массообменных процессов, равновесные концентрации не достигаются. Рабочие концентрации распределяемого компонента всегда отличаются от равновесных.

Разность между рабочими равновесными и рабочими концентрациями или, наоборот, характеризующими степень отклонения от равновесия, представляют собой движущую силу массообменных процессов.

4.1.2. Материальный баланс массообменных процессов

Материальный баланс массообменных процессов может быть составлен на основании следующих рассуждений. Рассмотрим взаимодействие двух движущихся фаз с массовыми расходами G — газообразной и L – жидкой, с концентрациями распределяемого компонента и кг/кг инертных компонентов распределяющих фаз.

При > и отсутствии потерь в процессе взаимодействия фаз при параллельных потоках вдоль поверхности раздела концентрация распределяемого компонента в газовой фазе уменьшается, а в жидкой — увеличивается (рис.4.1).

Для элемента поверхности

. (4.3)

Интегрируя уравнение (4.3) в пределах от начальных до конечных концентраций и , получим

(4.4)

Интегрируя уравнение (4.3) в пределах от начальных до текущих значений концентраций и , получим

.

(4.5)

Рис.4.1. Изменение концентраций распределяемого компонента

при прямоточном движении фаз.

Аналогично для противоточного взаимодействия фаз можно получить уравнение

, (4.6)

,

, .

Так как расходы инертных компонентов носителей газообразной и жидкой фаз постоянны ( ), из уравнений (4.5) и (4.6) следует, что рабочие концентрации распределяемого вещества в фазах G и L связаны линейной зависимостью. Поэтому процессы массообмена удобно представлять графически в координатах (рис. 4.2). Уравнение прямой, выражающее зависимость между рабочими концентрациями, называется рабочей линией процесса.

Рис. 4.2. Уравнение рабочей линии процесса.

4.1.3. Движущая сила массообменных процессов

Движущей силой массообменных процессов является разность между рабочей и равновесной концентрациями или, наоборот. Это зависит от того, которая из указанных концентраций больше.

На рис.4.3 приведены возможные варианты выражения движущей силы массообменного процесса при одном и том же направлении перехода распределяемого вещества.

Рис.1.4. Движущая сила массообменного процесса для участка аппарата:

а) по газовой фазе; б) по жидкой фазе.

При этом движущую силу можно выражать либо через концентрации распределяемого вещества в фазе G, либо L. В этой связи уравнения массопередачи, записанные по фазам, имеют вид:

, (4.6)

. (4.7)

Индексы у коэффициента скорости процесса показывают, какие концентрации приняты для выражения движущей силы. В общем случае и , но всегда выполняется равенство:

. (4.8)

Из рис. 4.3. следует, что движущая сила меняется с изменением рабочих концентраций. В этой связи для всего процесса массообмена, протекающего в пределах изменения концентраций от начальных до конечных, должна быть определена средняя движущая сила по газовой фазе или жидкой — .

С учетом средней движущей силы процесса основное уравнение массопередачи для всей поверхности контакта фаз может быть записано в виде:

, (4.9)

. (4.10)

При определении движущей силы возможны два случая:

— зависимость между равновесными концентрациями не линейна и определяется функциональной зависимостью самого общего вида типа ;

— зависимость между равновесными концентрациями линейная — ( — представляет собой постоянную величину).

Определим среднюю движущую силу по фазе G для случая перехода распределяемого компонента из газовой в жидкую фазу. Для элемента поверхности имеем:

;

Из сопоставления равенств

для элементарной поверхности фазового контакта имеем

.

После интегрирования в пределах 0 –F и получим:

. (4.11)

Изменим границы интегрирования с целью исключения отрицательного знака перед интегралом, и вставим равенство для :

. (4.12)

При выражении движущей силы для жидкой фазы получим аналогичное выражение

(4.13)

При сравнении уравнений (4.9) и (4.10) с уравнениями (4.12) и (4.13) составим выражения для средних движущих сил по газовой и жидкой фазам:

(4.14)

(4.15)

Для случаев, когда между равновесными концентрациями существует прямолинейная зависимость, при определении средней движущей силы используются более простые зависимости, вывод которых приведен в учебной литературе:

;

.

Интегралы, стоящие в правой части равенств (4.14) и (4.15), называют числами единиц переноса – сокращенно ЧЕП.

ЧЕП для газовой фазы:

.

ЧЕП для жидкой фазы:

.

Число единиц переноса, как следует из уравнений (4.14) и (4.15), определяют по средней движущей силе:

;

.

Физический смысл ЧЕП состоит в том, что эта величина характеризует изменение рабочей концентрации фазы, приходящееся на единицу движущей силы.

Эти соотношения справедливы для всех случаев, когда между рабочими и равновесными концентрациями существуют линейные и нелинейные зависимости.

В случае линейных зависимостей между концентрациями уравнения для вычисления ЧЕП имеют более простой вид:

;

,

где и — тангенсы угла наклона рабочих и равновесных линий изменения концентраций.

4.1.4. Модифицированные уравнения массопередачи

В большинстве случаев основное уравнение массопередачи используют в модифицированной форме. Это в первую очередь связано со сложностью геометрического определения поверхности контакта фаз для насадочных, тарельчатых и других массообменных аппаратов.

Если поверхность фазового контакта неопределима, основной характеристикой массообменного аппарата может служить объем, высота или число ступеней фазового контакта.

Если аппарат характеризуется объемом V, тогда , где (м 2 /м 3 ) — удельная поверхность фазового контакта, развиваемая в 1 м 3 объема. Модифицированные уравнения масопередачи в этом случае имеют следующий вид:

;

,

где и объемные коэффициенты массопередачи для газовой и жидкой фаз, соответственно.

Достаточно часто за основную характеристику аппарата принимают его высоту. Обозначим площадь поперечного сечения и высоту аппарата, соответственно f и H, тогда . Из уравнения (4.11) после изменения пределов интегрирования и решения относительно высоты аппарата для газовой фазы получим

.

Комплекс , имеет размерность длины [м] и физический смысл, состоящий в том, что он представляет собой высоту аппарата, эквивалентную единице переноса (ВЕП). Обозначим:

,

.

Тогда уравнения массопередачи по фазам можно записать следующим образом:

,

.

Высота, эквивалентная единице переноса, по смыслу соответствует величине, обратной объемному коэффициенту массопередачи, а число единиц переноса- величине, обратной движущей силы процесса.

Чем выше интенсивность массопередачи в аппарате, тем меньше в нем величина ВЕП. Значения ВЕП определяются по эмпирическим формулам для различных типов аппаратов. Отмети также, что ВЕП используется только для расчета аппаратов с постоянным поперечным сечением рабочей части.

Для определения ЧЕП в качестве вспомогательного приема может применяться способ определения числа ступеней изменения рабочих концентраций.

Рассмотрим процесс массопередачи, в котором зависимости между равновесными концентрациями и рабочими концентрациями распределяемого вещества представляет прямые линии и .

Если изменение рабочей концентрации распределяемого компонента в газовой фазе от входа в элемент аппарата до выхода происходит таким образом, что концентрация на выходе становится равной равновесной концентрации на входе , то такое изменение рабочих концентраций представляет собой ступень изменения концентраций (рис. 4.4).

Рис.4.4. Ступень изменения концентрации распределяемого компонента.

Число единиц переноса для одной такой ступени (элемента) аппарата составляет:

.

В рассматриваемом случае

и .

= .

В то же время , а . И тогда

. (4.16)

Из уравнения (4.16) следует, что только при условии прямых линий и число единиц переноса, , соответствующее одной ступени изменения концентрации, есть величина постоянная, не зависящая от концентрации.

Это положение позволяет определить графическим путем общее число единиц переноса для всего аппарата. Допустим, что в процессе массообмена рабочие концентрации изменяются в пределах и (рис. 4.5).

Число ступеней изменения рабочих концентраций может быть определено графическим построением ломаной линии между равновесной и рабочей прямыми. В рассматриваемом примере число ступеней изменения концентраций (элементов) равно 4. Эта характеристика может иметь дробное значение. Общее число единиц переноса для аппарата можно определить умножением ЧЕП элемента на число элементов (ступеней контакта), т.е

.

Число ступеней может быть определено и аналитически. На основе приемов аналитической геометрии (рис. 4.5,а) можно получить:

.

Рис.1.6. Определение числа единиц переноса по числу изменения ступеней концентрации: а) равновесная и рабочая линии процесса прямые;

б) равновесная линия кривая, рабочая – прямая.

Предложенный выше путь определения ЧЕП допускается и в общем случае, когда зависимость кривая линия (рис. 4.5,б) В этом случае будет переменной величиной.

Если допустить, что в пределах одной ступени можно с некоторым приближением принять существование линейной равновесной зависимости, для определения общего ЧЕП можно предложить равенство:

.

Использование этого равенства предполагает предварительное графическое определение числа ступеней изменения концентрации и графическое определение величин , , , и для каждой ступени с последующим определением общего ЧЕП. При принятой в пределах одной ступени линейной зависимости между равновесными концентрациями величина определяется как средняя логарифмическая. В подавляющем большинстве случаев ) величина может быть вычислена как средняя арифметическая.

4.1.5. Основные законы массопередачи

В процессах переноса распределяемого компонента из одной фазы в другую различают два случая: 1) перенос из потока жидкости (газа) в поток жидкости, или наоборот; 2)перенос из твердого тела в поток жидкости (газа) или в обратном направлении, т.е. массообмен между пористой твердой фазой и потоком жидкой (газообразной) фазы.

Элементарными законами, которым подчиняется перенос распределяемого вещества из одной фазы в другую, является законы молекулярной диффузии, массоотдачи и массопроводности.

Закон молекулярной диффузии (первый закон Фика). Молекулярная диффузия в газах и растворах жидкостей происходит в результате хаотического движения молекул, не связанного с движением потоков жидкости. В этом случае происходит перенос молекул распределяемого компонента из областей высоких концентраций в область низких концентраций. Кинетика переноса подчиняется в этом случае первому закону Фика, формулировка которого аналогична закону теплопроводности: количество вещества, продиффундировавшего в пределах фазы, пропорционально градиенту концентраций, площади, перпендикулярной направлению диффузионного потока, и времени:

, (4.16)

где — коэффициент пропорциональности, или коэффициент диффузии.

Коэффициент диффузии показывает, какое количество вещества диффундирует через поверхность 1 м 2 в течение 1 с при разности концентраций на расстоянии 1 м, равной единице.

Знак минус в правой части уравнения показывает, что при молекулярной диффузии направление перемещения вещества и градиент концентраций противоположны друг другу.

Размерность коэффициента зависит от способа выражения концентрации распределяемого компонента. Если это объемные концентрации, то размерность коэффициента следующая:

=[(кг·м·м 3 )/(м 2 ·с·кг)]=[м 2 /с].

Коэффициент диффузии не является постоянной величиной. Это достаточно малая величина для газов. Она на четыре порядка выше, чем для жидкостей. Коэффициент диффузии увеличивается с ростом температуры и уменьшается с повышением давления. Если в газах коэффициент диффузии не зависит от концентрации диффундирующего вещества, то в жидкостях это влияние особенно значимо для неразбавленных растворов.

Дифференциальное уравнение молекулярной диффузии
(второй закон Фика).
Для вывода дифференциального уравнения, как это было принято для всех рассмотренных случаев в гидростатике и теплопроводности, выделяется в неподвижной среде элементарный параллелепипед с ребрами dx, dy, dz (рис.4.6).

Рис.4.6. К выводу дифференциального уравнения молекулярной диффузии.

Если через этот элементарный параллелепипед за счет молекулярной диффузии перемещается распределяемое вещество, то через левую, заднюю и нижнюю грани за промежуток времени в него входят количества вещества соответственно и , а через противоположные грани – правую, переднюю, и верхнюю – входят количества вещества соответственно и . Следовательно элемент за промежуток времени приобретает диффундирующее вещество в количестве:

.

При этом концентрация диффундирующего вещества повышается на .

Согласно основному молекулярной диффузии, ,

.

;

;

.

Суммируя левые и правые части трех последних равенств, получим:

.

С другой стороны, тот же прирост количества диффундирующего вещества в элементе можно найти умножением объема элемента на изменение концентрации за время , т.е.

Приравнивая правые части двух последних зависимостей, получим уравнение молекулярной диффузии:

. (4.17)

Левая часть этого уравнения характеризует локальное изменение концентрации распределяемого компонента в неподвижном элементе, выделенном в распределяющей фазе.

Закон массотдачи (Щукарева). Основной закон массоотдачи, или конвективной диффузии, впервые был сформулирован Щукаревым при изучении кинетики растворения твердых тел. Этот закон является аналогом закона теплоотдачи, сформулированным Ньютоном.

Количество вещества, перенесенного от поверхности раздела фаз в воспринимающую фазу, пропорционально разности концентраций у поверхности раздела фаз и в ядре потока воспринимающей фазы, поверхности фазового контакта и времени

, (4.18)

где — коэффициент массоотдачи, характеризующий перенос вещества в пределах фазы конвекцией и диффузией одновременно; — концентрация распределяемого компонента у поверхности раздела распределяющей фазы; — концентрация распределяемого компонента в ядре потока распределяющей фазы.

Отметим, что концентрация на границе рассматривается как равновесная концентрация.

Размерность коэффициента массоотдачи можно установить из уравнения:

[(кг·м 3 )/(м 2 ·с·кг)]=[м/с].

Коэффициент массотдачи показывает, какое количество вещества передается от поверхности раздела фаз в воспринимающую фазу через поверхность в 1 м 2 в течение 1 с при разности концентраций равной единице.

Для установившегося процесса коэффициент массоотдачи и концентрации сохраняют постоянное значение в рассматриваемом объеме:

. (4.19)

Если коэффициент массоотдачи сохраняет постоянное значение для всей поверхности, то уравнение принимает вид:

. (4.20)

Дифференциальное уравнение массоотдачи (конвективной диффузии). В основу рассмотрения явления конвективной диффузии положена теория диффузионного пограничного слоя.

Согласно этой теории распределяемое вещество переносится из ядра потока жидкости к границе раздела фаз непосредственно потоками жидкости и молекулярной диффузией (рис.4.7). Рассматриваемая система состоит из двух частей: ядра и пограничного диффузионного слоя, включающего в себя достаточно тонкий ламинарный подслой. В ядре перенос вещества осуществляется преимущественно токами жидкости в условиях достаточной турбулентности. Концентрация распределяемого компонента в ядре турбулизированного потока фазы принимается постоянной.

По мере приближения к пограничному диффузионному слою турбулентный перенос затухает и с приближением к границе раздела фаз в ламинарном подслое начинает превалировать перенос за счет молекулярной диффузии. Соответственно этому появляется градиент концентрации распределяемого компонента, увеличивающийся по мере приближения к границе. Таким образом, область диффузионного пограничного слоя – это область проявления и роста молекулярной диффузии от малого до максимального значения.

Рис.4.7. К формулировке закона конвективной диффузии.

При наличии конвективной диффузии концентрация распределяемого компонента изменяется не только вследствие молекулярной диффузии, но и механического переноса его из одной области пространства в другую. В этом случае концентрация распределяемого компонента будет функцией не только координат x, y, z и времени , но и составляющих скорости перемещения частиц потока .

При конвективной диффузии бесконечно малый элемент потока перемещается из одной точки пространства в другую. В этом случае изменение концентрации распределяемого компонента может быть выражено субстанциональной производной, которая учитывает изменение ее во времени и изменения, связанные с перемещением элемента из одной точки пространства в другую:

. (4.21)

В этом равенстве представляет собой локальное изменение концентрации распределяемого компонента, а комплекс — конвективное изменение концентрации.

Если в уравнении молекулярной диффузии (4.17) заменить локальное изменение концентрации полным , в соответствие с уравнением (4.21), то можно получить дифференциальное уравнение конвективной диффузии:

(4.22)

Уравнение конвективной диффузии необходимо решать совместно с уравнениями движения Навье-Стокса, поскольку переменными являются концентрации и проекции скорости потока. Однако эта система уравнений не имеет аналитического решения и для получения расчетных зависимостей по массообмену приходится прибегать к теории подобия.

4.1.6. Подобие процессов переноса массы

Системы уравнений конвективной диффузии и уравнений движения не имеют общего решения. Поэтому также, как и в случае гидромеханических и теплообменных процессов, можно методами теории подобия найти связь между переменными, характеризующими процесс переноса в потоке фазы, в виде обобщенного (критериального) уравнения массоотдачи.

В это уравнение входят критерии подобия, которыми описываются подобие процессов массоотдачи на границе фазы (подобие граничных условий) и в основной массе (ядре) фазы.

Подобие граничных условий можно установить, допуская наличие пограничного слоя, в котором перенос осуществляется только молекулярной диффузией. Количество вещества, переходящего из ядра к границе фазы, составляет

.

То же количество вещества переносится молекулярной диффузией через пограничный слой

.

Приравнивая выражения и проведя сокращения, получим зависимость, характеризующую подобие условий переноса на границе фазы:

.

Обозначив , запишем это уравнение в виде:

.

Из этого уравнения делением левой на правую часть, сократив подобные члены и опустив знак минус, получим безразмерный комплекс, который для подобных систем является одинаковым (одним и тем же), т.е. .

Данный комплекс величин, при выражении их в единицах одной системы, является безразмерным и в соответствии с первой теоремой подобия представляет собой критерий подобия. Этот комплекс называют диффузионным критерием Нуссельта

.

Диффузионный критерий Нуссельта выражает отношение интенсивности переноса вещества в ядре фазы к интенсивности переноса в диффузионном пограничном подслое, где массообмен определяется молекулярной диффузией.

Из дифференциального уравнения конвективной диффузии

……,

получаем безразмерные комплексы делением всех членов уравнения на :

/ ; .

Вычеркнув в полученных комплексах символы дифференцирования и направления, после сокращения получим диффузионный критерий Фурье:

или, чтобы исключить математические действия с малыми величинами в виде

,

и диффузионный критерийПекле

.

Равенство критериев в сходственных точках подобных систем – необходимое условие подобия неустановившихся процессов массоотдачи. Это равенство характеризует постоянство отношения изменения концентрации во времени к изменению концентрации вследствие чисто молекулярного переноса.

Критерий выражает меру отношения массы вещества, перемещаемой путем конвективного переноса и молекулярной диффузии, в сходственных точках подобных систем.

Подобие распределения концентраций и одновременно подобие скоростей в потоках соблюдается в общем случае в геометрически подобных системах при следующих условиях:

; ; .

Во многих случаях вместо критерия используют отношение критериев и , которое представляет собой диффузионный критерий Прандтля:

.

В критерий входят только величины, отражающие физические свойства потока. Этот критерий характеризует постоянство отношения физических свойств жидкости (газа) в сходственных точках подобных потоков. Критерий Прандтля рассматривается как мера подобия профилей скорости и концентрации в процессах массоотдачи.

При 1 толщина диффузионного подслоя равна толщине гидродинамического ламинарного подслоя.

Необходимой предпосылкой подобия процессов массоотдачи является соблюдение гидродинамического подобия, которое требует, чтобы в сходственных точках подобных потоков были равны не только критерии Рейнольдса, но и критерии Фруда. Критерий Фруда часто бывает удобно заменить критерием Галилея ( ) или Грасгофа ( , где — коэффициент объемного расширения), в которые не входит скорость потока.

Определяемой величиной при расчете массоотдачи является коэффициент , величину которого находят из диффузионного критерия Нуссельта. Этот критерий является определяемым.

Полученные критерии подобия дают возможность найти уравнение подобия конвективной диффузии:

,

где Г1, Г2, …Гn – симплексы геометрическое подобие систем, представляющие отношения характерных геометрических размеров l1 , l2 , …ln к некоторому определяющему размеру l0 .

Применительно к конкретным задачам массообмена общее уравнение подобия может быть упрощено. При рассмотрении стационарных процессов из уравнения исключается критерий Фурье

.

При вынужденном движении можно пренебречь естественной конвекцией

или .

В условиях естественной конвекции

или .

Расчетные зависимости называются критериальными уравнениями массоотдачи. Численные значения входящих в них постоянных коэффициентов A и показателей степеней n и m устанавливают при обработке опытных данных.

4.1.7. Связь коэффициентов массопередачи и массоотдачи

Чтобы установить аналиттческую зависимость между коэффициентами массопередачи и массоотдачи, принимают, что на границе раздела фаз достигается равновесие. Это предположение равносильно допущению о том, что сопротивлением переносу вещества через границу раздела фаз можно пренебречь. Отсюда как следствие вытекает положение об аддитивности фазовых сопротивлений, которое является одной из предпосылок к расчету коэффициента массопередачи.

Допустим, что распределяемый компонент переходит из фазы G в фазу L и движущая сила выражается в концентрациях фазы G. При установившемся процессе массопередачи количество вещества, переходящее из одной фазы в другую фазу, определяется по уравнению:

.

Для упрощения рассмотрим случай, когда равновесная зависимость между равновесными концентрациями представляют линейную зависимость , где m – тангенс угла наклона линии равновесия.

Из уравнения равновесия следует

и .

Уравнение массоотдачи для жидкой фазы

.

Подставляя значения и в уравнение массоотдачи, получим

. (4.23)

Из уравнения массоотдачи для газовой фазы

. (4.24)

Складывая выражения (4.23) и (4.24) и исключая неизвестную концентрацию на границе раздела фаз получим

.

Из уравнения массопередачи следует, что

.

Приравнивая правые части и, сокращая подобные члены, получим выражение для коэффициента массопередачи по газовой фазе

. (4.25)

При выражении коэффициента массопередачи в концентрациях жидкой фазы получим

. (4.26)

Левые части уравнений представляют собой общее сопротивление переносу вещества из фазы в фазу, т.е. сопротивление массопередаче, а правые части – сумму сопротивлений массоотдаче в фазах. Поэтому эти зависимости являются уравнениями аддитивности фазовых сопротивлений. Эти уравнения справедливы и для случая, если линия равновесия является кривой.

4.1.8. Массопередача с твердой фазой

В основе таких распространенных процессов пищевых производств как адсорбция, сушка, экстракция из твердых пористых материалов, лежат общие закономерности массообмена с участием твердой фазы.

Массопередача между твердой и движущейся жидкой (газовой) фазой складывается из двух процесов: 1) перемещением распределяемого компонета внутри пор твердого тела к поверхности раздела фаз (или от нее) вследствие внутренней массоотдачи, или массопроводности; 2) перенос того же вещества от поверхности раздела фаз в поток жидкости (газа, пара) за счет массоотдачи. Иными словами, массопередача является результатом внутренней и внешней диффузии.

В качестве закона, которому подчиняется кинетика переноса распределяемого вещества в твердом теле, принят закон, аналогичный закону теплопроводности: количество вещества, переместившегося в твердой фазе за счет массопроводности, пропорционально градиенту концентрации, площади, перпендикулярной направлению потока вещества, и времени, т.е.

.

В этом уравнении коэффициент скорости процесса называется коэффициентом массопроводности. Коэффициент массоопроводности аналогичен коэффициенту диффузии, но при одинаковых условиях меньше его, поэтому его иногда называют коэффициентом «стесненной диффузии».

Процесс перемещения вещества внутри твердого тела может быть описан дифференциальным уравнением массопроводности:

. (4.27)

Вполне очевидно, что не является постоянной величиной. Он зависит от природы процесса (адсорбция, сушка, выщелачивание), от ряда факторов, определяющих значение коэффициента молекулярной диффузии, и от структуры твердого пористого тела.

Дифференциальное уравнение массопроводности должно быть дополнено уравнением, характеризующим условия на границе раздела твердой и жидкой фаз. К элементарной площадке на границе раздела подводится вещество из твердой фазы в количестве

.

От элементарной площадки в омывающую фазу отводится

. (4.28)

Приравнивая правые части этих уравнений, получим дифференциальное уравнение, характеризующие условия на границе раздела фаз:

. (4.29)

Из уравнения (1.29) может быть получен безразмерный комплекс делением правой на левую часть, который называется диффузионным критерием Био

.

Критерий Био выражает отношение интенсивности переноса вещества в ядре омывающей фазы к интенсивности переноса в твердом материале, где массообмен связан с массопроводностью.

Из дифференциального уравнения массопроводности

получаем безразмерный комплекс делением правой на левую часть, который называется диффузионным критерием Фурье

,

характеризующим изменение скорости потока вещества, перемещаемого массопроводностью в твердом теле.

Дифференциальное уравнение массопроводности для одномерного перемещения вещества по толщине пластины (рис.4.8) имеет аналитическое решение в виде:

, (4.30)

где — безразмерная концентрация распределяемого вещества в твердой фазе с координатой ; — текущая концентрация в точке в момент времени ; — определяющий размер твердого тела; безразмерная координата точки, в которой концентрация равна .

В рассматриваемом случае в момент времени концентрация внутри пластины меняется от до , в зависимости от координаты , т.е. .

Рис.4.8. Осесимметричное изменение концентрации распределяемого компонента по толщине пористой твердой пластины во времени.


источники:

http://poznayka.org/s98250t1.html

http://mydocx.ru/1-40645.html