Основное уравнение равномерного движения жидкости имеет вид

Вопрос №20. Основное уравнение равномерного движения жидкости. Формула Шези.

Рассмотрим прямолинейное равномерное движение жидкости. Живые сечения в этом случае могут быть произвольной формы, но не должны изменяться по всей длине рассматриваемого участка. В таком потоке потери напора определяются лишь потерями по длине.

Выделим из потока участок жидкости длиной l и запишем уравнение Бернулли для сечений 1 и 2( рис. 32 )

z1 , z2 — ординаты центра тяжести сечений 1,2,

p1 , p2 — давление в центрах тяжести этих сечений,

v1 , v2 — средние скорости в этих сечениях,

h1-2 — потери напора по длине.

Так как движение равномерное, то v1 =v2 и уравнение можно переписать так:

. (1)

В случае равномерного движения разность удельных потенциальных энергий равна потере напора по длине.

Для вычисления этой разности напишем сумму проекций на ось А-А всех сил, действующих на участке 1-2. Эти силы следующие:

1) сила тяжести жидкости

,

2) силы давления на плоские сечения

, , ,

,

где t — сила трения на единицу площади смачиваемой поверхности

русла, c — смоченный периметр,

4) силы давления стенок на жидкость ( эти силы не подсчитываем, так как они параллельны оси А-Аи, следовательно, их проекции на ось А-А равны нулю ).

Спроектируем все эти силы на ось А-А:

.

.

Подставим выражение для сил в уравнение

.

Разделим обе части этого равенства на , имеем

. (2)

Сравнивая выражения (1) и (2), находим

,

.

Отношение площади живого сечения S к смоченному периметру c называется гидравлическим радиусом

.

Величина обозначается через i и называется гидравлическим уклоном.

.

Это уравнение называется основным уравнением равномерного движения.

Величина имеет размерность квадрата скорости

.

Выражение — называется динамической скоростью, обозначается v*

.

Формула Шези — формула для определения средней скорости потока при установившемся равномерном турбулентном движении жидкости в области квадратичного сопротивления для случая безнапорного потока. Опубликована французским инженером-гидравликом А. Шези (AntoinedeChézy, 1718–1798) в 1769 году. Применяется для расчётов потоков в речных руслах и канализационых системах.

,

где V — средняя скорость потока, м/с;

C — коэффициент сопротивления трения по длине (коэффициент Шези), являющийся интегральной характеристикой сил сопротивления;

R — гидравлический радиус, м;

I — гидравлический уклон м/м.

Формула Шези имеет то же предназначение, что и формула Дарси-Вейсбаха. Коэффициент потерь на трение связан с коэффициентом сопротивления С следующей зависимостью:

.

Коэффициент сопротивления C может быть определён по формуле Н. Н. Павловского:

где n — коэффициент шероховатости, характеризующий состояние поверхности русла, для случая канализационных труб принимается в диапазоне (0,012. 0,015); для других случаев nbsp;— информация приведена в литературе [1]

у — показатель степени, зависящий от величины коэффициента шероховатости и гидравлического радиуса:

Эта формула рекомендуется для значений R [2]

Дата добавления: 2015-04-18 ; просмотров: 161 ; Нарушение авторских прав

Основное уравнение равномерного движения жидкости

Основное уравнение равномерного движения жидкости

Основное уравнение равномерного движения жидкости. Рассмотрим устойчивое, равномерное (продольно равномерное) движение жидкости в произвольной поперечной цилиндрической трубе Длина секции b (рис. 5.11).Используйте уравнения, представляющие законы изменения импульса. Это векторная форма любого объема V, заключенного в поверхность A、 Проекция членов этого уравнения на ось совпадает с направлением скорости жидкости. Где; проекция вектора скорости на ось C, очевидно, и= И = |и|; проекция вектора плотности распределения внешних объемных сил на ось B I. определить напряжения pn/, принимая во внимание N ca1 в противоположном направлении от 1U a и u в том же направлении (и принимая во внимание раздел 5.1 леммы 1).

Если сторона потока представляет собой неподвижную твердую поверхность, то знак минус вводится таким образом, чтобы касательное напряжение m было положительным. Людмила Фирмаль

  • В этом случае pn /-тангенциальное напряжение, действующее со стороны Abok (перпендикулярно этой поверхности n) и ориентированное вдоль оси (pn и pn-нормальные напряжения поверхности сечение O и ω соответственно).в результате это выглядит так: Внутрь!»: РП= РПП = ПП на СО2 ’■Пн; = + Р»= » П2; А6 (Вт: РШ-напряжение сдвига. Поскольку движение является устойчивым, локальная составляющая реальной производной равна нулю, а при равномерном (продольно равномерном) движении плотность распределения импульса ri вдоль потока не изменяется, и, следовательно, конвективная составляющая реальной производной также равна нулю. (5.61) результат перепишите в следующий формат.
  • Гравитационный потенциал I)= & 2, следовательно, Г,=&гас1 <и = = −2-、 Объемный элемент (IV, предполагая, что стороны цилиндрические) называется (IV-oh?。 Где 2 [и 2-вертикальные координаты 2 произвольных соответствующих (на одной линии потока) точек сечения co и co2. Согласно Лемме 2 (см. раздел 5.1) и зависимости гидростатического давления от плоскости (2.33), последние 2 интеграла из (5.62) представляются в следующем виде: Где P3 и p? Это центр тяжести и давление w2. Перейдем к интеграционным соображениям на стороне аббока. Для простоты укажите напряжение сдвига pn ^ = M. Поскольку движения равномерны, можно взять полосу 1lZX в качестве элемента B. где b-длина выделенного управляющего объема, а 6X-основная длина смачиваемого участка (см. рис. 5.11).

Форма интеграла в этом случае имеет вид (5.63) если вы подставляете (5.65) в исходное уравнение (5.62)、 поскольку bx и r2 соответствуют любым соответствующим точкам в разделах 1-1 и 2-2, мы предполагаем, что это вертикальные координаты центроида разделов 1-1 и 2-2.Если разделить все члены уравнения (5.66) на p&W. Если движение в разрезе равномерное, как описано выше、 Где H-потенциальное давление. Имея это в виду, он представляет(5.67) в виде: Где I-пьезоэлектрическое смещение. Это общий вид основных уравнений равномерного движения.

Более широко эта формула используется в некоторых случаях, когда m является постоянным во всех точках вокруг увлажненной области. Людмила Фирмаль

  • Это условие выполняется точно в цилиндрической форме и почти точно в прямоугольных каналах, которые очень широки. Уравнение(5.69) преобразуется в следующий вид Уравнения (5.71) и (5.72) используются не только для описанных выше случаев, но и для каналов с различными формами поперечного сечения, вводя в эти уравнения среднее касательное касательное напряжение вместо X. В заключение отметим, что при равномерном движении она равна 3 = 1e. при использовании формул (571) и (572) это учитывается далее.

Смотрите также:

Возможно эти страницы вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Основное уравнение равномерного движения

Равномерным движением называется установившееся движение, при котором скорости частиц жидкости не изменяются вдоль траекторий. При равномерном движении жидкости в водопроводах, а также в открытых руслах живые сечения, средние скорости течения и глубины по длине потока остаются постоянными.

Выведем основное уравнение равномерного движения, на основании которого выявим факторы, влияющие на величину гидравлических потерь по длине трубопровода.

Рассмотрим поток жидкости произвольной формы площадью , имеющий по длине постоянное живое сечение и наклоненный к горизонту под углом(рис. 5.1). Выделим в потоке сечениями 1-1 и 2-2 отсек длинойl. Действие отброшенной жидкости слева и справа заменим давлениями р1 и р2, которые создают внешние силы, приводящие жидкость в движение: ;. К ним относятся и сила тяжести отсека жидкости:

.

На жидкость действуют также силы сопротивления движению. Эти силы приложены вдоль поверхности стенок. Обозначим через удельную силу трения, через– длину смоченного периметра. Тогда сила трения

.

Составим уравнение равновесия сил, действующих на выделенный отсек.

По условию равномерного движения, внешние силы, приводящие жидкость в движение, должны быть равны силам сопротивления, т.е. если спроектировать все силы на ось потока, получим

,

где .

.

Разделим все слагаемые на и сгруппируем

. (5.1)

Сравним выражение (5.1) с уравнением Бернулли для потока реальной жидкости:

.

. (5.2)

Так как — гидравлический радиус, то выражение (5.2) представим в виде

. (5.3)

разделим левую и правую часть выражения (5.3) на l:

или

. (5.4)

Выражения (5.2), (5.3) и (5.4) являются уравнениями равномерного движения.

Формулы для определения гидравлических потерь

Линейные потери. Основной формулой линейных потерь, наиболее полно вскрывающей их суть, является формула Дарси – Вейсбаха:

, (5.5)

где — коэффициент гидравлического трения, он зависит от режима движения жидкости и относительной шероховатости, т.е.;— соответственно длина и диаметр трубопровода;— скорость движения жидкости.

Формула (5.5) является универсальной. По ней можно подсчитать линейные потери в трубопроводах любого назначения, но в настоящее время этой формулой пользуются при расчете объемного гидравлического привода.

при расчете водопроводных систем широко используются табличные методы. Так линейные потери можно определить по формуле

, (5.6)

где — гидравлический уклон, т.е. потери, приходящиеся на единицу длины трубопровода, берется из таблиц в зависимости от материала трубопровода, его диаметра и расхода;l — длина расчетного участка трубопровода.

Линейные потери водопроводных систем определяются так же по зависимости

, (5.7)

где l — длина расчетного участка; Q — расход по участку; К — расходная характеристика, берется из таблиц в зависимости от материала трубопровода и его диаметра.

рассмотрим особенности расчета безнапорных систем, каковыми являются каналы, лотки и т.п. устройства.

При равномерном движении жидкости в подобных системах уравнение Бернулли для потока реальной жидкости, составленное для сечений 1-1 и 2-2 (рис.5.2) имеет вид

,

т.е. разница геометрических напоров затрачивается на преодоление линейных потерь. Таким образомт движение жидкости обеспечивается наличием гидравлического уклона i, который в данном случае равен геометрическому:

Поэтому при проектировании каналов большой протяженности используют естественный уклон местности и в этом случае определяют пропускную способность канала и его размеры по формуле Шези:

(5.8)

где — живое сечение канала;R — гидравлический радиус; С — коэффициент Шези, который зависит от гидравлического радиуса и коэффициента шероховатости.

Коэффициент Шези берется из таблиц или определяется по формулам, например, по формуле Маннинга

.

При необходимости решаются и другие задачи.

Местные потери. Для их определения пользуются единственной формулой

, (5.9)

где — коэффициент местного сопротивления, берется из таблиц и графиков, вычисляется по специальным формулам в зависимости от вида местного сопротивления;V — скорость движения жидкости в трубопроводе, где установлено местное сопротивление.


источники:

http://lfirmal.com/osnovnoe-uravnenie-ravnomernogo-dvizheniya-zhidkosti/

http://hydro-maximum.com.ua/a329270-osnovnoe-uravnenie-ravnomernogo.html

Читайте также:
  1. Grand sissonne owerte без продвижения
  2. Grand sissonne owerte без продвижения
  3. II.Четыре главных средства продвижения
  4. Re – Рейнольдс саны) формуласында l нені білдіреді
  5. V2:4 Новые религиозные движения и нетрадиционные религии
  6. А9. ОЦЕНКА И АНАЛИЗ ЭФФЕКТИВНОСТИ ФИРМЫ. ФОРМУЛА ДЮПОНА
  7. Автобус как средство передвижения. Организация автобусных туров, их география, известные туроператоры.
  8. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
  9. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
  10. Акты международных организаций по экономическим вопросам.