Основное уравнение теплопередачи имеет вид

Основные уравнение теплообмена

Основы теории передачи тепла. Классификация теплообменных аппаратов. Конструкции.

Основные понятия

Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом. Движущая сила любого процесса теплообмена — разность температур более и менее нагретого тел. При наличии такой разности тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретого к менее нагретому телу. Теплообмен представляет собой обмен энергией между молекулами, атомами и свободными электронами.

Тела, участвующие в тпелообмене, называются теплоносителями.

Теплопередача — наука о процессах распространения тепла. Различают три элементарных способа передачи тепла.

1) Теплопроводность — перенос тепла вследствие теплового движения микрочастиц, непосредственно соприкасающихся друг с другом. В твердых телах теплопроводность — основной способ распространения тепла.

2) Конвекция — перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости. Различают свободную (естественную) конвекцию, обусловленную разностью плотностей в различных точках объема жидкости или газа за счет разности температур, и вынужденную конвекцию, происходящую при принудительном движении всего объема.

3) Тепловое излучение — распространение электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Все тела способны излучать и поглощать энергию, таким образом осуществляется лучистый теплообмен.

В реальных условиях тепло передается комбинированным путем.

Перенос тепла от стенки к газообразной или жидкой среде или в обратном направлении называется теплоотдачей. Процесс передачи тепла от более нагретой к менее нагретой жидкости или газу через разделяющую их поверхность или твердую стенку называется теплопередачей.

Расчет теплообменной аппаратуры включает:

1) Определение теплового потока — количества тепла Q, которое должно быть передано за определенное время от одного теплоносителя к другому. Тепловой поток вычисляется путем составления и решения тепловых балансов.

2) Определение поверхности теплообмена F аппарата, обеспечивающей передачу требуемого количества тепла в заданное время. Величина поверхности теплообмена определяется скоростью теплопередачи, зависящей от механизмов передачи тепла и их сочетанием друг с другом. Поверхность теплообмена находят из основного уравнения теплопередачи.

Основные уравнение теплообмена

Основное уравнение теплопередачи выражает общую зависимость для процессов теплопередачи, выражающее связь между тепловым потоком Q’ и поверхностью теплообмена F:

K — коэффициент теплопередачи, определяющий среднюю скорость передачи тепла вдоль всей поверхности теплообмена; Dtср — средняя разность температур между теплоносителями, определяющая среднюю движущую силу процесса теплопередчи, или температурный напор; t — время.

Физический смысл уравнения: количество тепла, передаваемое от более нагретого к менее нагретому теплоносителю, пропорционально поверхности теплообмена F, среднему температурному напору Dtср и времени t.

Для непрерывных процессов теплообмена:

Отсюда коэффициент теплопередачи:

Коэффициент теплопередачи показывает, какое количество тепла (в Дж) переходит за 1 секунду от более нагретого к менее нагретому теплоносителю через поверхность теплообмена 1 м 3 при средней разности температур между теплоносителями 1 градус.

В основе расчета теплопроводности лежит закон Фурье:

То есть, количество тепла dQ, передаваемое посредством теплопроводности через элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямо порпорционально температурному градиенту ∂t/∂n поверхности dF и времени dt.

Количество тепла, передаваемое через единицу поверхности в единицу времени:

Здесь q — плотность теплового потока. Знак минус указывает на то, что тепло перемещается в сторону падения температуры.

Количество переданного тепла:

Здесь d — толщина стенки, м; tст1 – tст2 — разность температур поверхностей стенки, град; F — площадь поверхности стенки, м 2 ;  — время, с.

Для непрерывного процесса передачи тепла теплопроводностью при =1:

Коэффициент пропорциональности l называется коэффициентом теплопроводности.

Коэффициент теплопроводности l показывает, какое количество тепла проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на 1 градус на единицу длины нормали к изотермической поверхности. Его величина зависит от природы вещества, его структуры, температуры и некоторых других факторов.

При обычных температурах и давлениях лучшими проводниками тепла являются металлы, худшими — газы.

В основе расчета теплоотдачи лежит закон охлаждения Ньютона:

То есть: количество тепла dQ, отдаваемое за время dt поверхностью стенки dF, имеющей температуур tст, к жидкости с температурой tж, прямо пропорционально dF и разности температур tст – tж.

Применительно к поверхности теплообмена всего аппарата F для непрерывного процесса теплоотдачи это уравнение принимает вид:

Коэффициент пропорциональности a называется коэффициентом теплоотдачи. Величина его характеризует интенсивность переноса тепла между поверхностью тела и окружающей средой. Он выражается следующим образом:

То есть, коэффициент теплоотдачи a показывает, какое количество тепла передается от 1 м 2 поверхности стенки к жидкости (или наоборот) в течение 1 секунды при разности температур между стенкой и жидкостью 1 градус.

Вследствие сложной структуры потоков, особенно в условиях турбулентного движения, величина a является сложной функцией многих переменных. Коэффициент теплоотдачи зависит от: — скорости жидкости, ее плотности и вязкости, — тепловых свойств жидкости (удельная теплоемкость, теплопроводность) и коэффициента объемного расширения, — геометрических параметров — формы и определяющих размеров стенки (для труб – от размера и диаметра) и шероховатости стенки.

При сопоставлении уравнений теплопроводности и теплоотдачи получаем следующее выражение для установившегося процесса теплообмена:

После преобразований получим:

Nu — критерий Нуссельта. Равенство критериев Нуссельта характеризует подобие процессов теплопереноса на границе между стенкой и потоком жидкости. Он является мерой соотношения толщины пограничного слоя d и определяющего геометрического размера.

Упаковочное оборудование, запайщики, микродозаторы

Расфасовочное оборудование для малого бизнеса

ОСНОВНОЕ УРАВНЕНИЕ ТЕПЛОПЕРЕДАЧИ

Ки­нетическое уравнение, которое выражает связь между тепловым потоком Q И поверхностью F Теплопередачи, называемое Основным Уравнением теплопередачи:

Q = KF tСрτ, (11.2)

Где К — кинетический коэффициент (коэффициент теплопередачи), характеризующий скорость переноса теплоты; tСр — средняя движущая сила или средняя разность температур между теплоносителями (средний температурный напор), по поверх­ности теплопередачи; τ- время.

Тепловой поток Q Обычно определяют из теплового баланса, При этом в общем случае (без учета потери теплоты в окружающую среду)

Где Q1-количество теплоты, отдаваемое горячим теплоносителем; Q2-количество теплоты, принимаемое холодным теплоносителем; G1 И G2 — расход горячего и холодного теплоносителей; Н1н И Н1к-Начальная и конечная энтальпии горячего теплоносителя; Н2н И HНачальная и конечная энтальпии холодного теплоносителя.

Если теплоносители не меняют своего агрегатного состояния в процессе теплопередачи (процессы нагревания и охлаждения), то:

Где C1 И С2 — теплоемкости горячего и холодного теплоносителя (при средней температуре теплоносителя).

Основное уравнение теплопередачи обычно используют для определения поверхности теплопередачи:

F = Q / ( K ср ). (11.5)

Движущая сила процесса ср представляет собой среднюю разность температур между температурами теплоносителей. Коэффициент теплопередачи К Характеризует скорость процесса теплопередачи с участием всех трех видов переноса теплоты. Физический смысл коэффициента теплопередачи вытекает из уравнения (11.2); его размерность:

При выражении Q в ккал/ч

Коэффициент теплопередачи показывает, какое количество теплоты передается от горячего теплоносителя к холоДному за I с через 1 м2 стенки при разности температур между Теплоносителями, равной 1 град.

Теплопередача. Основное уравнение теплопередачи. Коэффициент теплопередачи. Тепловая изоляция

Страницы работы

Фрагмент текста работы

является перенос тепла от одного теплоносителя к другому через разделяющую их стенку. В этом случае тепло от одного теплоносителя к стенке и от стенки к другому теплоносителю передается конвекцией (теплоотдачей), а через стенку – теплопроводностью. Такой способ переноса тепла получил название теплопередачи, а стенка – поверхности теплопередачи.

19.1. Основное уравнение теплопередачи. Коэффициент теплопередачи

Количество тепла, передаваемое от одного теплоносителя к другому через стенку, определяется основным уравнением теплопередачи:

, (19.1)

где – разность температур теплоносителей.

В этом уравнении коэффициент теплопередачи K является лишь количественной, чисто расчетной характеристикой процесса, зависящей от интенсивности переноса тепла на отдельных его стадиях:

– перенос тепла от горячего теплоносителя к стенке ();

– перенос тепла от стенки к холодному теплоносителю ();

– перенос тепла через стенку ().

Таким образом, он является функцией:

. (19.2)

Численная величина коэффициента теплопередачи определяет количество тепла, которое передается от одного теплоносителя к другому в единицу времени через разделяющую их стенку площадью 1 м 2 при разности температур между теплоносителями 1 градус:

.

Расчет коэффициента теплопередачи является одной из основных задач поверхностного теплообмена. Его знание необходимо, когда требуется найти поверхность теплопередачи при известных Q и , а также когда необходимо определение Q или одной из температур теплоносителей при известной поверхности нагрева.

Ориентировочные значения коэффициентов теплопередачи, полученные практически для различных случаев теплообмена, представлены в табл. 19.1.

Таблица 19.1 – Ориентировочные значения коэффициента теплопередачи [Вт/(м 2 ·К)]

От газа к газу (при невысоких давлениях)

От газа к жидкости (газовые холодильники)

От конденсирующегося пара к газу (воздухоподогреватели)

От жидкости к жидкости (вода)

От жидкости к жидкости (углеводороды, масло)

От конденсирующегося пара к воде (конденсаторы, подогреватели)

От конденсирующегося пара к органическим жидкостям (подогреватели)

От конденсирующегося пара органических веществ к воде (конденсаторы)

От конденсирующегося пара к кипящей жидкости (испарители)

Взаимная связь между коэффициентом теплопередачи, с одной стороны, и коэффициентами теплоотдачи и теплопроводности, с другой, зависит от геометрической формы стенки, разделяющей теплоносители.

19.1.Теплопередача при постоянных температурах теплоносителей

Плоская стенка. На рис. 19.1 показана плоская стенка толщиной , материал которой имеет коэффициент теплопроводности . По одну сторону стенки движется теплоноситель с температурой t1 (в ядре потока), по другую сторону – теплоноситель с температурой t2. Температуры поверхностей стенки и ; коэффициенты теплоотдачи и ; .

Рисунок 19.1 – Характер изменения температур при теплопередаче
через плоскую стенку.

При установившемся процессе количество тепла, передаваемого в единицу времени через площадь F от ядра потока горячего теплоносителя к стенке, равно количеству тепла, передаваемого через стенку и от стенки к ядру потока холодного теплоносителя. Это количество тепла можно определить по любому из соотношений:

(19.3)

Из этих соотношений:

(19.3)

Сложив левые и правые части равенств (19.4), получим

(19.5)

Из сопоставления уравнений (19.1) и (19.5) следует, что

, (19.6)

или . (19.7)

Величина , обратная коэффициенту теплопередачи, носит название термического сопротивления теплопередаче. Величины и являются термическими сопротивлениями теплоотдаче, а – термическим сопротивлением стенки. Таким образом, термическое сопротивление теплопередаче равно сумме термических сопротивлений теплоотдаче и стенки, т.е. общее термическое сопротивление равно сумме частных. Поэтому, если стенка состоит из нескольких слоев толщиной и коэффициенты теплопроводности их соответственно равны то термическое сопротивление теплопередаче такой стенки

,

или . (19.8)

В этом случае выражение (19.6) для коэффициента теплопередачи K принимает следующий вид:

. (19.9)

Анализ уравнений (19.6) и (19.9) показывает, что коэффициент теплопередачи K зависит в основном от значения наибольшего из термических сопротивлений. Поэтому для интенсификации процесса теплообмена необходимо прежде всего


источники:

http://pak.com.ua/processy-i-apparaty-upakovochnogo-proizvodstva/osnovnoe-uravnenie-teploperedachi/

http://vunivere.ru/work41204