Основное уравнение центробежного насоса уравнение эйлера

Теоретический напор насоса, формула Эйлера

Во вращающемся рабочем колесе на частицы жидкости действует центробежная сила:

F= m ω 2 R = ρ∙V∙ ω 2 R

Где Fц- центробежная сила

V – объем частиц

ω- угловая скорость

R- радиус рабочего колеса

В результате этого в центре колеса падает давление, создается разрежение, а на периферии колеса давление повышается, тем самым создается напор.

Движение жидкости в межлопаточных каналах вращающегося колеса можно рассматривать как результат сложения двух движений: переносного (вращение колеса) и относительного (движе­ние относительно колеса).

Поэтому вектор абсолютной скоростижидкости в колесе V может находиться как сумма векторов окруж­ной скорости U и относительной скорости W.

При этом относительная скоростьWнаправлена по касательной к лопатке, а окружнаяU по касательной к соответствующей окружности.

Параллелограмм скоростей можно построить для лю­бой точки на лопатке.

Если все величины, относящиеся к входу на лопатку, отмечать индексом 1, а величины, относящиеся к выходу, — индексом 2, а угол между векторами скоростей окружной и абсолютной обо­значим через a, а между касательной к лопатке и касательной к окружности колеса, проведенной в сторону, обратную вращению, — через b ,то можно получить формулу для расчета теоретического напора (формула Эйлера)

(12)

Для вывода основного уравнения теории центробежного насоса принимают следующие два допущения:

1. Насос имеет бесконечно большое число одинаковых лопаток (z=¥), а толщина этих лопаток равна нулю (b=0). Это допущение означает, что мы предполагаем в межлопаточных кана­лах колеса такое струйное течение, при котором форма всех струек в относительном движении совершенно одинакова и точно соответ­ствует форме лопаток, а скорости зависят только от радиуса и не меняются на окружности данного радиуса. Это положение может иметь место лишь в том случае, когда каждая элементарная струйка направляется своей лопаткой.

2. Коэффициент полезного действия насоса равен единице (h=1), т.е. в насосе отсутствуют все виды потерь энергии и, сле­довательно, вся мощность, которая затрачивается на вращение колеса, целиком передается жидкости Такая работа насоса возможна лишь при перекачке идеальной жидкости, при отсутствии зазоров в насосе, а также при отсутствии механического трения в сальниках и подшипниках

Такой насос, у которого z=¥ и h=1, называетсяидеальным центробежным насосом.

Обычно жидкость подходит к рабочему колесу насоса без предварительной закрутки, а войдя в колесо, вступает в межло­паточные каналы, двигаясь радиально Это значит, что вектор V1 направлен по радиусу, а угол a1=90°. Следовательно, второй член в уравнении делается равным нулю и уравнение прини­мает вид

Эта форма уравнения Эйлера более употребительна.

Реальное колесо центробежного насоса имеет Z=4-8, a2 = 5 — 10 0 , b2 = 20 — 40 0 .

В этом случае поток в относительном движении уже не следует строго по направлению лопаток, что проводит к снижению теоретического напора НТ по сравнению с НТ∞..

где: К — поправка на коническое число лопаток,

Коэффициент К = 0,6 — 0,8 и зависит от кинематики и конструкции колеса.

Формула показывает, что для получения с помощью центробежного насоса больших напоров нужно иметь,

во-первых, большую окружную скорость вращения колеса и,

во-вторых, достаточную закрутка потока жидкости колесом.

Первое достигается соответствующими значениями числа оборотов и диаметра колеса, а второе — достаточным числом лопаток, их размером и формой.

Уравнение Эйлера

Жидкость, перекачиваемая под действием центробежной силы насосом, при прохождении через межлопаточные пространства (каналы) рабочего колеса приобретает как потенциальную, так и кинетическую энергию.

На рис. 2.25 изображена схема изменения направления скоростей на рабочем колесе при входе жидкости на рабочую лопатку и выходе с нее. Энергия в потоке жидкости увеличивается в результате силового воздействия лопаток колеса на жидкость и соответствующего расхода энергии двигателя, приводящего насос в действие. Напор, развиваемый насосом, может характеризовать удельную энергию, т. е. энергию, приобретенную единицей массы жидкости.


Рис. 2.25. Схема изменения направления скоростей на рабочем колесе насоса

Эйлер вывел уравнение для определения теоретического напора при следующих допущениях: а) перекачиваемая жидкость является идеальной (при ее протекании через проточную часть насоса исключаются гидравлические сопротивления); б) рассматриваемый насос имеет бесконечно большое число лопаток, благодаря чему все частицы жидкости движутся внутри колеса по одинаковым траекториям, имеющим очертания лопаток.

Бесконечное число лопаток дает бесконечно узкий канал для прохода жидкости и обеспечивает ламинарный характер течения жидкости, что упрощает построение векторной диаграммы на выходе. Допустим, что за 1 с через колесо протекает масса жидкости т. При входе в лопаточное колесо частица жидкости получает окружную скорость направленную по касательной к окружности входных кромок и равную u1 = 0,5ωD1, где ω — угловая скорость колеса насоса (по часовой стрелке); D1 — диаметр внутренней окружности колеса. Кроме того, жидкость получает относительную скорость ω1 которая направлена по касательной к контуру лопатки от положения входа.

Абсолютная скорость с1 может быть найдена построением параллелограмма, сторонами которого являются векторы скорости u1 и ω1. После того как частица жидкости совершила путь вдоль лопаток колеса, при выходе она будет иметь окружную скорость u2, направленную по касательной к наружному контуру колеса, и относительную ω2, направленную по касательной к контуру лопатки. Построив параллелограмм, можно найти абсолютную скорость выхода с2. Напор Ht∞ (t — идеальная жидкость; ∞ — бесконечно большое число лопаток) определяется на основании закона, известного из теоретической механики, по которому приращение момента количества движения материальной системы относительно данной оси за некоторый промежуток времени равно моменту импульса всех внешних сил за тот же промежуток времени (например, за 1 с).

Количество движения массы жидкости при входе равно произведению массы на скорость F1 = mc1, а при выходе F2 = mс2. Момент количества движения массы жидкости при входе равен 0,5mc1D1 cos α1, момент количества движения массы жидкости при выходе 0,5mc2D2 cos α2, где α1, α2 — углы между направлениями абсолютной и окружной скоростей. Момент импульса внешних сил равен разности моментов количества движения М = 0,5 (mc2D2 cos α2 — mc1D1 cos α1). Для упрощения обе части уравнения умножим на угловую скорость и разделим на массу, а левую часть разделим и умножим на ускорение свободного падения:
Mωg/(mg) = 0,5 (ωc2D2 cos α2 — mc1D1 cos α1. (2.6)
Известно, что мощность равна произведению угловой скорости и момента импульса внешних сил: N = ωМ. Если мощность выразить через теоретический напор, то она равна N = mgHt∞, откуда
Ht∞ = N/(mg). (2.7)
Заменяя в уравнении (2.6) произведение Мω на N и помня, что u1 = 0,5ω1D1 и u2 = 0,5ω2D2, получаем N/(mg) = (c2u2 cos α2 —с1u1 cos α1)/g. С учетом равенства (2.7) теоретический напор определится из выражения Ht∞ = (c2u2 cos α2 — c1u1 cos α1)/g.

Полный теоретический напор равен сумме статического и динамического напоров: Ht∞ = Hст + Hдин. Это очевидно из другого уравнения Эйлера, полученного через уравнение Бернулли: Ht∞ = Hст + Hдин = (n2 — u1)/(2g) + (w1 — w2)/(2g) + (c2—c1)/(2g).

Так как проекция абсолютной скорости на направление окружной скорости u2 представляет собой тангенциальную составляющую абсолютной выходной скорости с2, то она вычисляется по выражению c2u = с2 cos a2. Ввиду того что у большинства центробежных насосов отсутствуют направляющие аппараты при входе жидкости на лопатки и во избежание больших гидравлических потерь от ударов жидкости о лопатки угол ах принято выбирать равным 90°. Но cos 90° = 0, следовательно, c1u1 cos а1 = = 0. Таким образом, получаем основное уравнение центробежного насоса, или уравнение Эйлера:
Ht∞ = u2c2 cos a2/g = u2c2u/g. (2.8)
Основные уравнения для получения теоретического напора Ht в центробежном насосе были получены при условии, что траектория каждой частицы жидкости, движущейся по рабочему колесу, совпадает с профилем лопатки. Это было бы возможно лишь в том случае, когда каждая элементарная струйка направлялась бы двумя бесконечно тонкими лопатками, которых потребовалось бы бесконечно большое число. В действительном насосе число лопаток ограничено и они имеют определенную толщину. Это приводит к искажению треугольников скоростей, пересечению струек жидкости и образованию различных завихрений. Затраты на эти потери энергия снижают создаваемый напор на величину коэффициента φ = 1/<1 + 2 /z·1/[1 — (γ1/γ2)2]>, где ψ — технологический коэффициент, который зависит от степени обработки проточной части и угла β2 между направлениями относительной и окружной скоростей, находится по соотношению ψ= (0,55÷0,65) + 0,6 sin β1 ≈ 0,8÷1,3; z = 6÷9 — число лопастей судового насоса.

Для получения действительного напора необходимо учитывать также потери на преодоление гидравлических сопротивлений в насосе. Тогда (2.8) может быть преобразована в формулу действительного напора Hд = Ht∞φηr=u2c2uφηr/g.

Основное уравнение насоса (уравнение Эйлера)

Напор, развиваемый насосом, и коэффициент полезного действия тесно связан со значением и направлением скоростей потока жидкости в межлопастных каналах колеса. Для установления этой связи воспользуемся классической теоремой об изменении моментов количества движения, которая может быть сформирована следующим образом: производная по времени главного момента количества движения системы материальных точек относительно некоторой оси равна сумме моментов всех внешних сил, действующих на эту систему. Математически теорема записывается следующим образом:

где m – масса рассматриваемой системы материальных точек;

υ – абсолютная скорость их движения;

r – расстояние до оси.

Удобство теоремы об изменении моментов количества движения в приложении к сплошной среде заключается в том, что с ее помощью динамическое взаимодействие между жидкостью и обтекаемыми поверхностями можно определить по характеру течения в контрольных сечениях без учета структуры потока внутри выделенного объема.

При подаче насоса Q масса жидкости, участвующей в движении, составляет: m = ρQ, где ρ – плотность жидкости.

Момент количества движения на выходе из колеса:

Момент количества движения жидкости на входе в колесо

С учетом сделанных допущений это уравнение может быть переписано в виде:

Из треугольников скоростей следует, что

где D1 – диаметр всаса, D2 – диаметр рабочего колеса.

Нарисуем параллелограммы скоростей потока на входе в рабочее колесо центробежного насоса и на выходе из него.

Подставляя значение rвых и rвх , получим:

Все внешние силы, действующие на массу жидкости, заполняющей межлопастные каналы рабочего колеса, можно разделить на три группы:

2) Давление на жидкость.

3) Силы на обтекаемых поверхностях рабочего колеса.

Таким образом, момент всех внешних сил относительно оси вращения сводятся к моменту динамического воздействия рабочего колеса Mр.к. на протекающую через него жидкость, т.е.

При этом, мощность, передаваемая жидкости рабочим колесом насоса, равна произведению Mр.к. ω = ρgQHт

где Hт – теоретический напор, создаваемый рабочим колесом насоса.

Эта зависимость была впервые выведена в середине 18 века математиком и механиком Леонардом Эйлером, членом Петербургской академии. Она получила название уравнение Эйлера или основное уравнение лопастного насоса.

Дата добавления: 2019-02-08 ; просмотров: 336 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://www.stroitelstvo-new.ru/sudostroenie/mehanizm/uravnenie-eilera.shtml

http://poznayka.org/s4629t2.html