Основной целью линеаризации уравнения регрессии

Линеаризация нелинейных моделей регрессии

Вы будете перенаправлены на Автор24

Понятие регрессии

Регрессия – это односторонняя зависимость, которая устанавливает соответствие между случайными величинам.

Сущность регрессии заключается в том, чтобы через математическое выражение установить связь между зависимой и независимыми переменными. Ее отличительной особенностью от функциональной зависимости является тот факт, что каждому значению независимой соответствует одно определенное значение зависимой. В регрессионной связи одной и той же величине могут соответствовать абсолютно разные величины.

Впервые регрессию стали использовать в конце девятнадцатого века. Она была применена для установления зависимости между параметрами человека. Регрессию смогли перенести на плоскость. Точки легли на одну прямую, поэтому ее назвали линейной.

Построение линейной регрессии подразумевает, что ошибок в ней нет. Тогда распределение величин происходит под влиянием нормального закона. То есть, среднее значение равно нулю, а отклонение постоянно.

Чтобы вычислить параметры модели часто применяют программное обеспечение. Оно позволяет обрабатывать большие массивы информации с минимальными ошибками. Существуют специальные методы, позволяющие проверить величину отклонения. Ошибки необходимы для того, чтобы находить доверительные интервалы и проверять выдвинутые в начале исследования гипотезы. Например, в статистике используется критерий Стьюдента, позволяющий сопоставить средние значения двух выборок.

Самое простое представление регрессии состоит из зависимости между соотношениями случайной и независимой величины. Этот подход необходим для установления функциональной связи, если величины не случайны. В практической деятельности коэффициенты неизвестны, поэтому их исследуют с помощью экспериментальных данных.

Нелинейные модели регрессии

Построение нелинейной регрессии осуществляется для того, чтобы провести анализ. В нем экспериментальные данные записываются в функциональную зависимость, описывающей нелинейную комбинацию, представляющую модель, которая зависит от одной или нескольких переменных. Чтобы приблизить полученные данные к практическим величинам используется метод последовательных приближений.

Готовые работы на аналогичную тему

Этот метод заключается в следующем. Исследователем определяются корни уравнения или системы уравнений для того, чтобы упростить решаемую задачу, либо определить неизвестные параметры.

Структура нелинейной регрессии состоит из независимых и зависимых переменных. Для каждой переменной устанавливается случайная величина со средним значением. Погрешность может появиться, но есть ее обрабатывать, то она выйдет за пределы модели. В случае, если переменные не свободны, то модель становится ошибочной, поэтому для исследования становится непригодной.

Вот некоторые примеры нелинейных функций:

  • Показательные.
  • Логарифмические.
  • Тригонометрические.
  • Степенные.
  • Функция Гаусса.
  • Кривые Лоуренца.

В некоторых случаях регрессионный анализ может быть сведен к линейному, но данный способ должен применяться с осторожностью. Чтобы получить наилучший вариант расчета применяются оптимизационные алгоритмы. На практике могут применяться оценочные значения совместно с методиками оптимизации. В результате надо найти глобальный минимум суммы квадратов.

Нелинейная регрессия чаще всего применяется, как статистика линейной. Это позволяет сместить статистику, поэтому полученные данные интерпретируются с осторожностью.

Линеаризация нелинейных моделей регрессии

Линеаризация – это преобразование. Оно осуществляется для того, чтобы упростить определенные модели и вычисления. Например, применение логарифма к обеим частям линейной регрессии позволяет оценить неизвестные параметры более простым способом.

Но использование нелинейного изменения уравнения требует осторожности. Это связано с тем, что данные будут изменяться. Поэтому появятся ошибки модели. Их интерпретация может привести к ошибочному суждению о гипотезе. Обычно в нелинейных уравнениях используется модель Гаусса для исследования ошибок, что необходимо учитывать при проверке.

В которых случаях применяется уравнение Лайнуивер – Берк, либо обобщенная линейная модель.

Чтобы уточнить построенную модель и снизить вероятность ошибок, независимая переменная разбивается на классы. Вследствие этого линейная регрессия разбивается посегментно. Она может дать результат, в котором будет видно, как ведет себя параметр в зависимом положении. Отображение изменений производится графически.

То есть сущность линеаризации заключается в том, что исследователь применяет особые методики для того, чтобы провести преобразования исходных данных. Это позволяет исследовать нелинейную зависимость. Переменные нелинейного уравнения преобразуются с помощью специальных методик в линейные. Это может привести к ошибкам, что необходимо учитывать в процессе преобразования уравнения. Метод может быть опасным, так как влияет на результат вычислений.

Сущность метода заключается в том, что нелинейные переменные заменяются линейными. Регрессия сводится к линейной. Такой подход часто используется для полиномов. Далее применяются известные и простые оценки исследования линейных регрессии. Но изменение полиномов должно так же проводиться с осторожностью. Чем выше порядок полинома, тем сложнее удержаться в рамках реалистичной интерпретации коэффициентов регрессии.

В логарифмических моделях составляется линейная модель с новыми переменными. Оценка результата происходит с помощью метода наименьших квадратов. Эта методика подходит для исследования кривых спроса и предложения, производственных функций, кривых освоения связи между трудоемкостью и производственными масштабами. Такой подход актуален при запуске новых видов продукции.

Лекция по эконометрике. Лекция по эконометрике

НазваниеЛекция по эконометрике
Дата21.06.2018
Размер1.32 Mb.
Формат файла
Имя файлаЛекция по эконометрике.docx
ТипЛекция
#47509
страница3 из 5
С этим файлом связано 6 файл(ов). Среди них: ЭКОНО Задача.docx, СТАТ в жив. Лекция №9.docx, Вопросы по АВтоматике.docx, ЛЕКЦИЯ СОЦ.СТАТ..doc, доступность к прдовольствию.pdf, Лекция по эконометрике.docx.
Показать все связанные файлы Подборка по базе: 3 лекция биоэтика Сд-рус.pptx, Лукъянова лекция.docx, 3 ЛЕКЦИЯ (1).pptx, 2 лекция.docx, 3 лекция макет МЕНЕДЖМЕНТ.docx, 4 -5 лекция.pdf, 15. Лекция_92a5b97c72fd42c2c693a97fd507a780.pdf, 1 Лекция ГТУ.pdf, морфология лекция 1.docx, 1-ші сабақтың лекциясы (1).docx

3. Множественная корреляция и линейная регрессия
Значения экономических переменных обычно определяется влиянием не одного, а нескольких факторов. Например, спрос на некоторое благо определяется не только ценой данного блага, но и ценами на замещающие и дополняющие блага, доходом потребителей и многими другими факторами. В этом случае вместо парной регрессии рассматривается множественная регрессия , где – зависимая переменная (результативный признак), – независимые, или объясняющие, переменные (признаки-факторы).

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
3.1 Спецификация модели. Отбор факторов при построении уравнения множественной регрессии
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.

  1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
  2. Факторы не должны быть интеркоррелированы (интеркорреляция – корреляция между объясняющими переменными) и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, может привести к нежелательным последствиям – система нормальных уравнений может оказаться плохо обусловленной и повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.

Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как с соответствующей остаточной дисперсией .

При дополнительном включении в регрессию фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:
и.
Если же этого не происходит и данные показатели практически не отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является лишним фактором.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по критерию Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости. Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют статистики для параметров регрессии.

Коэффициенты интеркорреляции позволяют исключать из модели дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:

10,80,70,6
0,810,80,5
0,70,810,2
0,60,50,21

Очевидно, что факторы и дублируют друг друга. В анализ целесообразно включить фактор , а не , хотя корреляция с результатом слабее, чем корреляция фактора с , но зато значительно слабее межфакторная корреляция . Поэтому в данном случае в уравнение множественной регрессии включаются факторы , .

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий:

  1. Затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл.
  2. Оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы были бы равны нулю. Так, для уравнения, включающего три объясняющих переменных

матрица коэффициентов корреляции между факторами имела бы определитель, равный единице:
.
Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:
.
Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Существует ряд подходов преодоления сильной межфакторной корреляции. Самый простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если , то возможно построение следующего совмещенного уравнения:
.
Рассматриваемое уравнение включает взаимодействие первого порядка (взаимодействие двух факторов). Возможно включение в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по -критерию Фишера, но, как правило, взаимодействия третьего и более высоких порядков оказываются статистически незначимыми.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно к разным методикам. В зависимости от того, какая методика построения уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:

  1. Метод исключения – отсев факторов из полного его набора.
  2. Метод включения – дополнительное введение фактора.
  3. Шаговый регрессионный анализ – исключение ранее введенного фактора.

При отборе факторов также рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6–7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а -критерий меньше табличного значения.
3.2 Метод наименьших квадратов (МНК)
Возможны разные виды уравнений множественной регрессии: линейные и нелинейные.

Ввиду четкой интерпретации параметров наиболее широко используется линейная функция. Задача оценки статистической взаимосвязи переменных формулируется аналогично случаю парной регрессии.

Теоретическое уравнение множественной линейной регрессии имеет вид:

,
где — случайная ошибка, — вектор размерности .

Для того, чтобы формально можно было решить задачу оценки параметров должно выполняться условие: объем выборки n должен быть не меньше количества параметров, т.е. .

Если же это условие не выполняется, то можно найти бесконечно много различных коэффициентов.

Если (например, 3 наблюдения и 2 объясняющие переменные), то оценки рассчитываются единственным образом без МНК путём решения системы:
.
Если же , то необходима оптимизация, т.е. выбрать наилучшую формулу зависимости. В этом случае разность называется числом степеней свободы. Для получения надежных оценок параметров уравнения объём выборки должен значительно превышать количество определяемых по нему параметров. Практически, как было сказано ранее, объём выборки должен превышать количество параметров при xj в уравнении в 6-7 раз.

Задача построения множественной линейной регрессии состоит в определении -мерного вектора , элементы которого есть оценки соответствующих элементов вектора .

Уравнение с оценёнными параметрами имеет вид:
,

где е – оценка отклонения ε. Параметры при называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

Классический подход к оцениванию параметров линейной модели множественной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от расчетных минимальна:
.
Как известно из курса математического анализа, для того чтобы найти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Итак, имеем функцию аргумента:

Она является квадратичной относительно неизвестных величин. Она ограничена снизу, следовательно имеет минимум. Находим частные производные первого порядка, приравниваем их к нулю, и получаем систему () уравнения с () неизвестным. Обычно такая система имеет единственное решение. И называется системой нормальных уравнений:

Решение может быть осуществлено методом Крамера:
, где

,
а — частные определители, которые получаются из заменой соответствующего j – го столбца столбцом свободных членов.

Для двухфакторной модели ( данная система будет иметь вид:

Матричный метод.

Представим данные наблюдений и параметры модели в матричной форме.

– n – мерный вектор – столбец наблюдений зависимой переменной;

– (m+1) – мерный вектор – столбец параметров уравнения регрессии;

– n – мерный вектор – столбец отклонений выборочных значений yi от значений , получаемых по уравнению регрессии.

Для удобства записи столбцы записаны как строки и поэтому снабжены штрихом для обозначения операции транспонирования.

Наконец, значения независимых переменных запишем в виде прямоугольной матрицы размерности :

Каждому столбцу этой матрицы отвечает набор из n значений одного из факторов, а первый столбец состоит из единиц, которые соответствуют значениям переменной при свободном члене.

В этих обозначениях эмпирическое уравнение регрессии выглядит так:
.
Где .

Здесь – матрица, обратная к .

На основе линейного уравнения множественной регрессии

могут быть найдены частные уравнения регрессии:


т.е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором при закреплении остальных факторов на среднем уровне. В развернутом виде систему можно переписать в виде:

При подстановке в эти уравнения средних значений соответствующих факторов они принимают вид парных уравнений линейной регрессии, т.е. имеем

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

,
где – коэффициент регрессии для фактора в уравнении множественной регрессии, – частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть найдены средние по совокупности показатели эластичности:

, которые показывают на сколько процентов в среднем изменится результат, при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.
3.3 Анализ качества эмпирического уравнения множественной линейной регрессии
Проверка статистического качества оцененного уравнения регрессии проводится, с одной стороны, по статистической значимости параметров уравнения, а с другой стороны, по общему качеству уравнения регрессии. Кроме этого, проверяется выполнимость предпосылок МНК.

Как и в случае парной регрессии, для анализа статистической значимости параметров множественной линейной регрессии с m факторами, необходимо оценить дисперсию и стандартные отклонения параметров:

Обозначим матрицу:

и в этой матрице обозначим j – й диагональный элемент как . Тогда выборочная дисперсия эмпирического параметра регрессии равна:
,
а для свободного члена выражение имеет вид:

если считать, что в матрице индексы изменяются от 0 до m.

Здесь S 2 – несмещенная оценка дисперсии случайной ошибки ε (среднеквадратическая ошибка регрессии):
.
Соответственно, стандартные ошибки (отклонения) параметров регрессии равны
.
Для проверки значимости каждого коэффициента рассчитываются t – статистики:
,
Полученная t – статистика для соответствующего параметра имеет распределение Стьюдента с числом степеней свободы (n-т-1). При требуемом уровне значимости α эта статистика сравнивается с критической точкой распределения Стьюдента t(α; n-т-1) (двухсторонней).

Если , то соответствующий параметр считается статистически значимым, и нуль – гипотеза в виде или отвергается.

При параметр считается статистически незначимым, и нуль – гипотеза не может быть отвергнута. Поскольку bj не отличается значимо от нуля, фактор хj линейно не связан с результатом. Его наличие среди объясняющих переменных не оправдано со статистической точки зрения. Не оказывая какого–либо серьёзного влияния на зависимую переменную, он лишь искажает реальную картину взаимосвязи. Поэтому после установления того факта, что коэффициент bj статистически незначим, переменную хj рекомендуется исключить из уравнения регрессии. Это не приведет к существенной потере качества модели, но сделает её более конкретной.

Строгую проверку значимости параметров можно заменить простым сравнительным анализом.

Если , т.е. , то коэффициент статистически незначим.

Если , т.е. , то коэффициент относительно значим. В данном случае рекомендуется воспользоваться таблицей критических точек распределения Стьюдента.

Если , то коэффициент значим. Это утверждение является гарантированным при (n-т-1)>20 и .

Если , то коэффициент считается сильно значимым. Вероятность ошибки в данном случае при достаточном числе наблюдений не превосходит 0,001.

К анализу значимости коэффициента bj можно подойти по – другому. Для этого строится интервальная оценка соответствующего коэффициента. Если задать уровень значимости α, то доверительный интервал, в который с вероятностью (1-α) попадает неизвестное значение параметра , определяется неравенством:

.
Если доверительный интервал не содержит нулевого значения, то соответствующий параметр является статистически значимым, в противном случае гипотезу о нулевом значении параметра отвергать нельзя.

Для проверки общего качества уравнения регрессии используется коэффициент детерминации R 2 . Для множественной регрессии R 2 является неубывающей функцией числа объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение R 2 . Действительно, каждая следующая объясняющая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведение зависимой переменной.

Анализ статистической значимости коэффициента детерминации проводится на основе проверки нуль-гипотезы Н0: R 2 =0 против альтернативной гипотезы Н1: R 2 >0. Для проверки данной гипотезы используется следующая F – статистика.

Задача 1. Бюджетное обследование пяти случайно выбранных семей дало следующие результаты (в тыс. руб.):

СемьяНакопления, SДоход, YИмущество, W
134060
265536
354536
43,53015
51,53090

А) Оценить регрессию S на Y и W.

Б) Спрогнозируйте накопления семьи, имеющей доход 40 тыс.руб.и имущество стоимостью 25 тыс.руб.

В) Предположим, что доход семьи вырос на 10 тыс.руб, в то время как стоимость имущества не изменилась. Оцените как возрастут её накопления.

Г) Оцените как возрастут накопления семьи, если её доход вырос на 5, а стоимость имущетва увеличилась на 15.

Задача 2. Для изучения жилья в городе по данным о 46 коттеджах было получено уравнение множественной регрессии:

Где у – цена объекта (тыс.дол), — расстояние до центра города, — полезная площадь объекта (кв.м), — число этажей в доме (ед.).

А) Проверить гипотезы о равенстве нулю коэффициентов в генеральной совокупности (т.е. проверить значимость коэффициентов регрессии).

Б) Проверить гипотезу об одновременном равенстве нулю коэффициентов множественной регрессии (или о том, что R 2 =0) в ген.совокупности.

  1. Нелинейные модели регрессии. Простейшие методы линеаризации

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам.

– полиномы различных степеней – , , ;

– равносторонняя гипербола – ;

– полулогарифмическая функция – .

2. Регрессии, нелинейные по оцениваемым параметрам.

– степенная – ;

– показательная – ;

– экспоненциальная – .

1. Регрессии нелинейные по включенным переменным сводятся к линейному виду с помощью методов линеаризации простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.

Полином второй степени приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению , оценка параметров которого при помощи МНК, приводит к системе следующих нормальных уравнений:


А после обратной замены переменных получим

Полином второй степени обычно применяется в случаях, когда для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую.

Аналогично, для полинома третьего порядка получим трёхфакторную модель.

Для полинома степени m, получим множественную регрессию с m объясняющими переменными
.
Среди нелинейной полиномиальной модели чаще всего используется полином второй степени, реже – третьей.

Для равносторонней гиперболы замена приводит к уравнению парной линейной регрессии , для оценки параметров которого используется МНК. Система линейных уравнений при применении МНК будет выглядеть следующим образом:


Такая модель может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объема выпускаемой продукции, времени обращения товаров от величины товарооборота, процента прироста заработной платы от уровня безработицы (например, кривая А.В. Филлипса), расходов на непродовольственные товары от доходов или общей суммы расходов (например, кривые Э. Энгеля) и в других случаях.

Аналогичным образом приводятся к линейному виду зависимости , и другие.

2. Регрессии, нелинейными по оцениваемым параметрам, делятся на два типа: нелинейные модели внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований, например, логарифмированием) и нелинейные модели внутренне нелинейные (к линейному виду не приводятся). К внутренне линейным моделям относятся, например, степенная функция – , показательная – , экспоненциальная – , логистическая – , обратная – . Среди нелинейных моделей наиболее часто используется степенная функция , которая приводится к линейному виду логарифмированием:
;

;

,

где . Т.е. МНК мы применяем для преобразованных данных:

а затем потенцированием находим искомое уравнение.

Широкое использование степенной функции связано с тем, что параметр в ней имеет четкое экономическое истолкование – он является коэффициентом эластичности. ( Коэффициент эластичности показывает, на сколько процентов измениться в среднем результат, если фактор изменится на 1%.) Формула для расчета коэффициента эластичности имеет вид:
.
Так как для остальных функций коэффициент эластичности не является постоянной величиной, а зависит от соответствующего значения фактора , то обычно рассчитывается средний коэффициент эластичности:.

Наконец, следует отметить зависимость логистического типа: . Графиком функции является так называемая «кривая насыщения», которая имеет две горизонтальные асимптоты и точку перегиба , а также точку пересечения с осью ординат :

Уравнение приводится к линейному виду заменами переменных .

К внутренне нелинейным моделям можно, например, отнести следующие модели: , , .

В случае, когда функция не поддаётся непосредственной линейной линеаризации, можно разложить её в функциональный ряд и затем оценить регрессию с членами этого ряда.

При линеаризации функции или разложении её в ряд возникают и другие проблемы: искажение отклонений и нарушение их первоначальных свойств, статистическая зависимость членов ряда между собой.

Например, если оценивается формула , полученная путём линеаризации или разложения в ряд, то независимые переменные связаны между собой функционально.

Поэтому во многих случаях актуальна непосредственная оценка нелинейной формулы регрессии. Для этого используется нелинейный МНК, идея которого основана на минимизации суммы квадратов отклонений расчётных значений от эмпирических, т.е. нужно оценить параметры вектора а функции , так чтобы ошибки по совокупности были минимальны:.

Для решения этой задачи существуют два пути:

1) непосредственная минимизация функции F с помощью методов нелинейной оптимизации, позволяющих находить экстремум выпуклых линий (метод наискорейшего спуска).

2) решение системы нелинейных уравнений, которая получается из необходимого условия экстремума функции – равенство нулю частных производных по каждому из параметров:

система уравнений:
.
Эта система может быть решена итерационными методами. Однако в общем случае решение такой системы не является более простым способом нахождения вектора а.

Существуют методы оценивания нелинейной регрессии, сочетающие непосредственную оптимизацию, использующую нахождение градиента, с разложением в ряд Тейлора для последующей оценки линейной регрессии (метод Марквардта).

При построении нелинейной регрессии более остро, чем в линейном случае, стоит проблема правильной оценки формы зависимости между переменными.

Неточности при выборе формы функции существенно сказываются на качестве отдельных параметров уравнения и соответственно, на адекватности всей модели в целом.

Любое уравнение нелинейной регрессии, как и линейной зависимости, дополняется показателем корреляции, который в данном случае называется индексом корреляции:

Здесь — общая дисперсия результативного признака y, — остаточная дисперсия, определяемая по уравнению нелинейной регрессии . Следует обратить внимание на то, что разности в соответствующих суммах и берутся не в преобразованных, а в исходных значениях результативного признака. Иначе говоря, при вычислении этих сумм следует использовать не преобразованные (линеаризованные) зависимости, а именно исходные нелинейные уравнения регрессии. По-другому можно записать так:

Величина R находится в границах , и чем ближе она к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии. При этом индекс корреляции совпадает с линейным коэффициентом корреляции в случае, когда преобразование переменных с целью линеаризации уравнения регрессии не проводится с величинами результативного признака. Так обстоит дело с полулогарифмической и полиномиальной регрессией, а также с равносторонней гиперболой. Определив линейный коэффициент корреляции для линеаризованных уравнений, например, в пакете Excel с помощью функции ЛИНЕЙН, можно использовать его и для нелинейной зависимости.

Иначе обстоит дело в случае, когда преобразование проводится также с величиной y, например, взятие обратной величины или логарифмирование. Тогда значение R, вычисленное той же функцией ЛИНЕЙН, будет относиться к линеаризованному уравнению регрессии, а не к исходному нелинейному уравнению, и величины разностей под суммами будут относиться к преобразованным величинам, а не к исходным, что не одно и то же. При этом, как было сказано выше, для расчета R следует воспользоваться выражением, вычисленным по исходному нелинейному уравнению.

Поскольку в расчете индекса корреляции используется соотношение факторной и общей СКО, то R 2 имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину R 2 для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится так же, как и оценка надежности коэффициента корреляции.

Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера:
,
где n-число наблюдений, m-число параметров при переменных х. Во всех рассмотренных нами случаях, кроме полиномиальной регрессии, m=1, для полиномов число параметров равно m, т.е. степени полинома. Величина m характеризует число степеней свободы для факторной СКО, а (n-m-1) – число степеней свободы для остаточной СКО.

Индекс детерминации R 2 можно сравнивать с коэффициентом детерминации r 2 для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем больше разница между R 2 и r 2 . Близость этих показателей означает, что усложнять форму уравнения регрессии не следует и можно использовать линейную функцию. Практически, если величина (R 2 -r 2 ) не превышает 0,1, то линейная зависимость считается оправданной. В противном случае проводится оценка существенности различия показателей детерминации, вычисленных по одним и тем же данным, через t-критерий Стьюдента:.

Здесь в знаменателе находится ошибка разности (R 2 -r 2 ), определяемая по формуле:


Если , то различия между показателями корреляции существенны и замена нелинейной регрессии линейной нецелесообразна.

В заключение приведем формулы расчета коэффициентов эластичности для наиболее распространенных уравнений регрессии:

Учебные материалы для студентов

Методические указания, конспекты, лекции, контрольные, лабораторные работы, курсовые.

Тесты по эконометрике

1. «Белым шумом» называется ___________ процесс
чисто случайный
2. Автокорреляционной функцией временного ряда называется
последовательность значений коэффициентов автокорреляции различных порядков
3. В исходном соотношении МНК сумма квадратов отклонений фактических значений результативного признака от его теоретических значений
минимизируется
4. В качестве показателя тесноты связи для линейного уравнения парной регрессии используется
линейный коэффициент корреляции
5. В качестве фиктивных переменных в модель множественной регрессии включаются факторы
не имеющие количественных значений
6. В левой части системы взаимозависимых переменных, как правило, находится
одна зависимая переменная
7. В левой части системы независимых уравнений находится
совокупность зависимых переменных
8. В линейном уравнении парной регрессии коэффициентом регрессии является значение
параметра b
9. В матрице парных коэффициентов корреляции отображены значения парных коэффициентов линейной корреляции между
переменными
10. В нелинейной модели парной регрессии функция является
нелинейной
11. В общем случае каждый уровень временного ряда формируется под воздействием
тенденции, сезонных колебаний и случайных факторов
12. В основе метода наименьших квадратов лежит
минимизация суммы квадратов отклонений фактических значений результативного признака от его теоретических значений
13. В приведенной форме модели в правой части уравнений находятся
только независимые переменные
14. В системах рекурсивных уравнений количество переменных в правой части каждого уравнения определяется как ______________ уравнений и количества независимых факторов
сумма количества зависимых переменных предыдущих
15. В системе независимых уравнений каждое уравнение представлено
изолированным уравнением регрессии
16. В стандартизованном уравнении множественной регрессии ;. Определите, какой из факторов х1 или х2 оказывает более сильное влияние на
,так как 2,1>0,3
17. В стандартизованном уравнении множественной регрессии переменными являются
стандартизованные переменные
18. В стандартизованном уравнении свободный член
отсутствует
19. Величина коэффициента детерминации при включении существенного фактора в эконометрическую модель
будет увеличиваться
20. Величина остаточной дисперсии при включении существенного фактора в модель
будет уменьшаться
21. Величина отклонений фактических значений результативного признака от его теоретических значений представляет собой
ошибку аппроксимации
22. Величина параметра в уравнении парной линейной регрессии характеризует значение
результирующей переменной при нулевом значении фактора
23. Взаимодействие факторов эконометрической модели означает, что
влияние одного из факторов на результирующий признак не зависит от значений другого фактора
24. Включение фактора в модель целесообразно, если коэффициент регрессии при этом факторе является
существенным
25. Временной ряд – это совокупность значений экономического показателя
за несколько последовательных моментов (периодов) времени
26. Временной ряд называется стационарным, если он является реализацией _____________ процесса
стационарного стохастического
27. Временной ряд характеризует
данные, описывающие один объект за ряд последовательных моментов (периодов) времени
28. Выбор формы зависимости экономических показателей и определение количества факторов в модели называется ________________ эконометрической модели
спецификацией
29. Выделяют три класса систем эконометрических уравнений
независимые, взаимозависимые и рекурсивные
30. Гетероскедастичность остатков подразумевает _____________ от значения фактора
зависимость дисперсии остатков
31. Гетероскедастичность подразумевает ________________________ от значения фактора
зависимость дисперсии остатков
32. Графическое изображение наблюдений на декартовой плоскости координат называется полем
корреляции
33. Дано уравнение регрессии . Определите спецификацию модели
линейное уравнение множественной регрессии
34. Двухшаговый метод наименьших квадратов предполагает ______ использование обычного МНК
однократное
35. Двухшаговый метод наименьших квадратов применим для решения
только сверхидентифицируемой системы одновременных уравнений
36. Двухшаговый метод наименьших квадратов применяется для оценки параметров
систем эконометрических уравнений
37. Для модели зависимости среднедушевого (в расчете на одного человека) месячного дохода населения (р.) от объема производства (млн р.) получено уравнение . При изменении объема производства на 1 млн р. доход в среднем изменится на
0,003 млн р.
38. Для моделирования зависимости предложения от цены не может быть использовано уравнение регрессии

39. Для моделирования сложных экономических систем целесообразно использовать
систему эконометрических уравнений
40. Для нелинейных уравнений метод наименьших квадратов применяется к
преобразованным линеаризованным уравнениям
41. Для оценки коэффициентов структурной формы модели не применяют _____ метод наименьших квадратов
обычный
42. Для существенного параметра расчетное значение критерия Стьюдента
больше табличного значения критерия
43. Для уравнения зависимости выручки от величины оборотных средств получено значение коэффициента детерминации, равное 0,7. Следовательно, _% дисперсии обусловлено случайными факторами
30

44. Для уравнения у = 3,14 + 2х +e значение коэффициента корреляции составило 2. Следовательно
значение коэффициента корреляции рассчитано с ошибкой
45. Если доверительный интервал для параметра проходит через точку ноль, следовательно
параметр является несущественным
46. Если значение индекса корреляции для нелинейного уравнения регрессии стремится к 1, следовательно
нелинейная связь достаточно тесная
47. Если значение коэффициента корреляции равно единице, то связь между результатом и фактором
функциональная
48. Если коэффициент регрессии является несущественным, то его значения приравниваются к
нулю и соответствующий фактор не включается в модель
49. Если между экономическими показателями существует нелинейная связь, то
целесообразно использовать спецификацию нелинейного уравнения регрессии
50. Если наиболее высоким оказался коэффициент автокорреляции первого порядка, то исследуемый ряд содержит только
тенденцию
51. Если наиболее высоким оказался коэффициент автокорреляции третьего порядка, то исследуемый ряд содержит
случайную величину, влияющую на каждый третий уровень ряда
52. Если оценка параметра эффективна, то это означает
наименьшую дисперсию остатков
53. Если предпосылки метода наименьших квадратов нарушены, то
оценки параметров могут не обладать свойствами эффективности, состоятельности и несмещенности
54. Если расчетное значение критерия Фишера меньше табличного значения, то гипотеза о статистической незначимости уравнения
принимается
55. Если спецификация модели нелинейное уравнение регрессии, то нелинейной является функция

56. Если спецификация модели отображает нелинейную форму зависимости между экономическими показателями, то нелинейно уравнение
регрессии
57. Если факторы входят в модель как произведение, то модель называется
мультипликативной
58. Если факторы входят в модель как сумма, то модель называется
аддитивной
59. Значение индекса корреляции, рассчитанное для нелинейного уравнения регрессии характеризует тесноту ______ связи
нелинейной
60. Значение коэффициента автокорреляции второго порядка характеризует связь между
исходными уровнями и уровнями этого же ряда, сдвинутыми на 2 момента времени
61. Значение коэффициента автокорреляции первого порядка равно 0,9 следовательно
линейная связь между последующим и предыдущим уровнями тесная
62. Значение коэффициента автокорреляции рассчитывается по аналогии с
линейным коэффициентом корреляции
63. Значение коэффициента детерминации рассчитывается как отношение дисперсии результативного признака, объясненной регрессией, к ___________ дисперсии результативного признака
общей
64. Значение коэффициента детерминации составило 0,9, следовательно
уравнение регрессии объяснено 90% дисперсии результативного признака
65. Значение коэффициента корреляции не характеризует
статистическую значимость уравнения
66. Значение коэффициента корреляции равно 0,9. Следовательно, значение коэффициента детерминации составит
0,81
67. Значение коэффициента корреляции равно 1. Следовательно
связь функциональная
68. Значение линейного коэффициента корреляции характеризует тесноту ________ связи
линейной
69. Значения коэффициента автокорреляции первого порядка равно 0,9. Следовательно
линейная связь между последующим и предыдущим уровнями тесная
70. Значения коэффициента корреляции может находиться в отрезке
[-1;1]
71. Из пары коллинеарных факторов в эконометрическую модель включается тот фактор, который при
достаточно тесной связи с результатом имеет меньшую связь с другими факторами
72. Известны значения аддитивной модели временного ряда: Yt — значение уровня ряда, Yt = 30, Т- — значение тренда, Т+15, Е- значение случайной компоненты случайных факторов Е=2. Определите значение сезонной компоненты S
13

73. Изолированное уравнение множественной регрессии может быть использовано для моделирования взаимосвязи экономических показателей, если
факторы не взаимодействуют друг с другом
74. Исследуется зависимость, которая характеризуется линейным уравнением множественной регрессии. Для уравнения рассчитано значение тесноты связи результативной переменной с набором факторов. В качестве этого показателя был использован множественный коэффициент
корреляции
75. Исходные значения фиктивных переменных предполагают значения
качественные
76. К линейному виду нельзя привести:
нелинейную модель внутренне нелинейную
77. К ошибкам спецификации относится
неправильный выбор той или иной математической функции
78. Качество подбора уравнения оценивает коэффициент
детерминации
79. Коррелограммой называется ______________________________ функции
графическое отображение автокорреляционной
80. Косвенный метод наименьших квадратов требует
преобразования структурной формы модели в приведенную
81. Критерий Стьюдента предназначен для определения значимости
каждого коэффициента регрессии
82. Критерий Фишера используется для оценки значимости
построенного уравнения
83. Критические значения критерия Фишера определяются по
уровню значимости и степеням свободы факторной и остаточной дисперсий
84. Критическое значение критерия Стьюдента определяет
максимально возможную величину, допускающую принятие гипотезы о несущественности параметра
85. Критическое значение критерия Стьюдента определяет минимально возможную величину, допускающую принятие гипотезы о
существенности параметра
86. Линеаризация не подразумевает процедуру
включение в модель дополнительных существенных факторов
87. Линеаризация подразумевает процедуру приведения
нелинейного уравнения к линейному виду
88. Линейное уравнение множественной регрессии имеет вид . Определите какой из факторов или оказывает более сильное влияние на y
так как 2,5 1, то есть x возрастает и y тоже возрастает) не может быть описана зависимость
выработки от трудоемкости
167. При построении модели временного ряда проводится расчет
каждого уровня временного ряда
168. При построении систем независимых уравнений набор факторов в каждом уравнении определяется числом факторов, оказывающих ________ на моделируемый показатель
существенное влияние
169. При построении системы эконометрических уравнений необходимо учитывать
структуру связей реальной экономической системы
170. При применении метода наименьших квадратов исследуются свойства
оценок параметров уравнения регрессии
171. При применении метода наименьших квадратов исследуются свойства оценок
параметров уравнения регрессии
172. При применении метода наименьших квадратов уменьшить гетероскедастичность остатков удается путем
преобразования переменных
173. При расчете значения коэффициента детерминации используется отношение
дисперсий
174. При хорошем качестве модели допустимым значением средней ошибки аппроксимации является ___%
5-7
175. Приведенная форма модели получена из _________формы модели
структурной
176. Приведенная форма модели представляет собой систему ________ функций эндогенных переменных от экзогенных
линейных
177. Приведенная форма модели является результатом преобразования
структурной формы модели
178. Проверка является ли временной ряд «белым шумом» осуществляется с помощью
статистики Бокса-Пирса
179. Проводится исследование зависимости выработки работника предприятия от ряда факторов. Примером фиктивной переменной в данной модели будет являться ______ работника
уровень образования
180. Простая линейная регрессия предполагает наличие
одного фактора и линейность уравнения регрессии
181. Расчет значения коэффициента детерминации не позволяет оценить
существенность коэффициента регрессии
182. Расчет средней ошибки аппроксимации для нелинейных уравнений регрессии связан с расчетом разности между ____________________________ переменной
фактическим и теоретическим значениями результативной
183. Расчетное значение критерия Фишера определяется как
отношение факторной дисперсии к остаточной, рассчитанных на одну степень свободы
184. Расчетное значение критерия Фишера определяется как ___________ факторной дисперсии и остаточной, рассчитанных на одну степень свободы
отношение
185. Расчетное значение критерия Фишера определяется как отношение
дисперсий
186. Результатом линеаризации полиномиальных уравнений является ______________ регрессии
линейные уравнения множественной
187. Свойствами оценок МНК являются: эффективность, а также
состоятельность и несмещенность
188. Система взаимозависимых уравнений в ее классическом виде называется также системой ______ уравнений
одновременных
189. Система независимых уравнений предполагает
совокупность независимых уравнений регрессии
190. Система нормальных уравнений метода наименьших квадратов строится на основании
таблицы исходных данных
191. Система рекурсивных уравнений включает в каждое
предыдущее (должно быть последующее) уравнение в качестве факторов все зависимые переменные предшествующих уравнений с набором собственно факторов
192. Система эконометрических уравнений не используется при моделировании
взаимосвязей временных рядов данных
193. Система эконометрических уравнений предполагает наличие _________ независимых признаков
нескольких зависимых и нескольких
194. Система эконометрических уравнений представляет систему
уравнений регрессии
195. Систему МНК, построенную для оценки параметров линейного уравнения множественной регрессии можно решить
методом определителей
196. Системы эконометрических уравнений классифицируются по
способу вхождения зависимых и независимых переменных в уравнение регрессии
197. Случайный характер остатков предполагает
независимость остатков от величины предсказанных по модели значений результативного признака
198. Смысл расчета средней ошибки аппроксимации состоит в определении среднего арифметического значения
отклонений, выраженных в процентах от фактических значений результативного признака
199. Совокупность значений критерия, при которых принимается нулевая гипотеза, называется областью _____________ гипотезы
принятия
200. Состоятельность оценки характеризуется
увеличением ее точности с увеличением объема выборки
201. Спецификацию нелинейного уравнения парной регрессии целесообразно использовать, если значение
индекса детерминации, рассчитанного для данной модели достаточно близко к 1
202. Спецификация модели нелинейная парная (простая) регрессия подразумевает нелинейную зависимость и
независимую переменную
203. Стандартная ошибка рассчитывается для проверки существенности
параметра
204. Статистические гипотезы используются для оценки
значимости уравнения регрессии в целом
205. Стационарность временного ряда не подразумевает отсутствие
стационарного стохастического процесса
206. Стационарность временного ряда означает отсутствие
тренда
207. Стационарность характерна для временного ряда
типа «белый шум»
208. Стохастическим процессом называется
набор случайных переменных X(t), где t – вещественные числа
209. Строится модель зависимости спроса от ряда факторов. Фиктивной переменной в данном уравнении множественной регрессии не является _________ потребителя
доход
210. Структурной формой модели называется система _______ уравнений
взаимосвязанных
211. Структурными коэффициентами модели называются коэффициенты ___________ в структурной форме модели
при экзогенных и эндогенных переменных
212. Структуру временного ряда можно выявить с помощью коэффициента __________ уровней ряда
автокорреляции
213. Табличное значение критерия Фишера служит для проверки статистической гипотезы о равенстве
факторной и остаточной дисперсий
214. Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является
линейность параметров
215. Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является:
линейность параметров
216. Увеличение точности оценок с увеличением объема выборки описывает свойство _______ оценки
состоятельности
217. Уравнение может быть линеаризовано при помощи подстановки

218. Уравнение регрессии характеризует зависимость
обратно пропорциональную
219. Уравнение регрессии, которое связывает результирующий признак с одним из факторов при зафиксированных на среднем уровне значении других переменных, называется
частным
220. Уровнем временного ряда является
значение временного ряда в конкретный момент (период) времени
221. Факторная дисперсия служит для оценки влияния
учтенных явно в модели факторов
222. Факторные переменные уравнения множественной регрессии, преобразованные из качественных в количественные называются
фиктивными
223. Факторы эконометрической модели являются коллинеарными, если коэффициент
корреляции между ними по модулю больше 0,7
224. Фиктивные переменные включаются в уравнение множественной регрессии для учета действия на результат признаков ____________ характера
качественного
225. Фиктивные переменные включаются в уравнения ____________ регрессии
множественной
226. Циклические колебания связаны с
общей динамикой конъюнктуры рынка
227. Экзогенными переменными не являются
зависимые переменные
228. Экзогенными переменными являются
независимые переменные
229. Экономические временные ряды, представляющие собой данные наблюдений за ряд лет, как правило, являются _______________________ временными рядами
нестационарными
230. Экспоненциальным не является уравнение регрессии

231. Эндогенными переменными не являются:
независимые переменные
232. Эндогенными переменными являются
зависимые переменные
233. Эффективность оценки на практике характеризуется
возможность перехода от точечного оценивания к интервальному

также в рубрике Контрольные, тесты:


источники:

http://topuch.ru/lekciya-po-ekonometrike/index3.html

http://studystuff.ru/controlnaya/testyi-po-ekonometrike