Основные понятия систем уравнений с двумя переменными

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Урок в 7 классе по теме «Основные понятия систем уравнений с двумя переменными».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ аннотация 7 класс.docx

В данной статье предлагается разработка урока алгебры в 7 классе по учебнику А.Г. Мордковича. Тема урока «Основные понятия систем уравнений с двумя переменными». Урок соответствует требованиям ФГОС. На уроке вводится понятие системы двух линейных уравнений с двумя переменными.

Ключевые слова: системы уравнений, решение систем.

In this article it is offered the elaboration of the lesson in algebra in the 7 th form on the textbook of A. E. Mordkovich. The topic of the lesson: “Main conceptions of the set of equations with two variables.” The lesson corresponds to the requirements of FGOS. On the lesson it is introduced the notion of the 2 set of equations with 2 variables.

Key words: the set of equations, the solution of sets.

Выбранный для просмотра документ основные понятия систем.ppt

Описание презентации по отдельным слайдам:

Является ли данная пара чисел решением уравнения 5х + у = 23: а) (4; 3) б) (5;2) в) (5;-2) г) (-3;38)

Из линейного уравнения 2х+у=4 выразите: а) переменную х; б) переменную у.

5х- 4у =16 и х — 2у = 0

Основные понятия систем уравнений с двумя переменными

х + у = 12, х – у = 2

Прочитать параграф 11 в учебнике, выполнить № 306, № 402 (а,б).

Спасибо за урок!

Выбранный для просмотра документ основные понятия системы.doc

Урок в 7 классе по теме «Основные понятия систем уравнений с двумя переменными».

Денисова Светлана Вячеславовна учитель математики МБОУ СОШ с. Дуван Дуванского района Республики Башкортостан

Тема: Основные понятия систем уравнений с двумя переменными

Цели: 1. ввести понятие системы двух линейных уравнений, их решение;

2. сформировать умение находить количество решений, не решая систему;

3. развивать культуру устной и письменной речи учащихся;

4. развивать мышление учащихся через умение анализировать и выделять

5. воспитать аккуратность.

В жизни много интересного,

Но пока вам неизвестного.

Будем думать и считать

И о многом узнавать.

2. Актуализация знаний и умений учащихся.

Какую тему мы изучали на прошлых уроках? (уравнение с двумя неизвестными)

— Чему вы научились, за время изучения этой темы покажут задания, которые я предлагаю вам решить.

Является ли уравнение с двумя переменными линейным:

а)3х – у = 17 в)13х + 6у = 0

б)х 2 — 2у = 5 г)ху + 2х = 9.

2. Является ли данная пара чисел решением уравнения 5х + у = 23:

3. Из линейного уравнения 2х+у=4 выразите: а) переменную х; б) переменную у.

(х = 2 – у/2, у = 4 – 2х)

4. Определите координаты точки пересечения прямых (4;6)

3.Постановка темы и целей урока.

— Не выполняя построения, найдите координаты точки пересечения графиков функций 5х- 4у =16 и х — 2у = 0 (выполнение этого задания вызывает у учащихся затруднение).

— Почему вы не можете решить это задание? (Мы умеем находить координаты точки пересечения графиков функций с помощью графиков.)

— То есть у вас недостаточно знаний для решения этого задания?

— Нам надо найти такую пару чисел, которая обращала бы каждое уравнение в верное равенство. В таких случаях говорят, что требуется решить систему линейных уравнений с двумя переменными.

— Итак, какая тема сегодняшнего урока? Правильно открываем тетради, записываем число и тему урока «Основные понятия систем уравнений».

— Какие цели мы поставим на урок? (Научиться решать системы линейных уравнений с двумя переменными.)

4. Изучение нового материала.

1. Понятие системы уравнений.

— Ребята, может кто-нибудь знает, как записываются системы уравнений?

— Уравнения системы записываются друг под другом и объединяют специальным символом – фигурной скобкой. (слайд)

2. Составление систем уравнений (работа в группах).

-Из предложенных уравнений составьте системы линейных уравнений с двумя переменными:

+ = 11 (5)

(Результат на доске записывает группа, быстрее других составившая системы линейных уравнений с двумя переменными.)

3.Физкультминутка (гимнастика для глаз).

4. Решение системы.

— Что является решением линейного уравнения с двумя переменными?

Подумайте, а если у нас два таких уравнения, что будет решением этих уравнений? (Пару значений (х;у), которая одновременно является решением и первого и второго уравнений системы, называют решением системы.)

— Итак, используя метод аналогии, вы сами сформулировали определение решения системы линейных уравнений с двумя переменными.

— А что значит решить систему уравнений? ( Решить систему – это значит найти все её решения или установить, что их нет)

Проверьте, является ли пара чисел х=3, у=1 (х=7, у=5) решением системы (по вариантам)
х + у = 12,

5. Условия решения систем.

— Как решать системы линейных уравнений вы узнаете на последующих уроках. А сейчас давайте подумаем как, не решая систему уравнений, определить, сколько решений она имеет. Я предлагаю вам построить графики уравнений и подумать при каких условиях система имеет решение и сколько. ( работа в группах)

а) у = 5х, б) у = х + 5, в) у = х + 4,

у = -2х + 7 у = х +7 у = х+ 4

Вывод: 1) если угловые коэффициенты прямых, являющихся графиками функций, различны, то система имеет единственное решение.

2) если угловые коэффициенты прямых, являющихся графиками функций, одинаковы, а m различны, то система не имеет решений. Говорят также, что система несовместна.

3) если уравнения имеют одинаковый вид, то система имеет бесконечное множество решений. Говорят, что система неопределённа.

А сейчас давайте проверим, как вы усвоили новый материал, для этого выполним самостоятельную работу.

1. Выяснить, сколько решений имеет система.

2. Является ли решением системы уравнений

пара (3;1) пара (2;2)

6. Домашнее задание.

Прочитать параграф 11 в учебнике, выполнить № 306, № 402 (а,б).

7. Подведение итогов.

— Урок подходит к концу. Давайте вспомним, какую цель мы ставили в начале урока? Достигли ли мы её? Что нового узнали на уроке?

Учащимся предлагается рисунок( у каждого на парте приготовлена заготовка), на котором нужно отметить свое место положение для данного урока, т.е.:

Если мало чего понятного и придется разбираться ещё раз с этим материалом, то вы у подножья горы;

Если все предельно понятно, но вы не уверены в своих силах, то вы на пути к вершине;

Если нет ни каких вопросов, и вы чувствуете власть над данной темой, то вы на пике.

Как решать системы уравнений с двумя переменными

Что такое система уравнений с двумя переменными

Системой уравнений в алгебре называется некое условие, смысл которого заключается в одновременном выполнении нескольких уравнений относительно нескольких (либо одной) переменных.

Это значит, что система представляет собой комплекс уравнений. Данные равенства могут содержать одну, две или более переменных. Основным условием понятия «система уравнений» является то, что все эти уравнения выполняются в одно время.

Объединить уравнения в систему можно с помощью фигурной скобки:

У р а в н е н и е 1 У р а в н е н и е 2 У р а в н е н и е 3 …

Графический метод решения

Принцип решения систем уравнений графическим способом заключается в построении графиков для каждого уравнения в общей системе координат. Тогда решения системы соответствуют точкам, в которых данные графики пересекаются. После объяснения решения ответ принято записывать, как координаты этих точек.

Разберем наглядный пример. Предположим, что дана некая система уравнений, решать которую нужно графическим способом. Выполним работу последовательно:

  1. Запишем систему.
  2. Выразим одну из переменных (пусть это будет у).
  3. Построим на координатной прямой графики функций.
  4. Найдем точки пересечения графиков.

2 x + 3 y = 12 3 x — y = 7 ⇔ y = 4 — 2 3 x y = 3 x — 7

Заметим, что точка пересечения графиков имеет следующие координаты:

Графический метод решения систем уравнений уступает в точности другим способам. Использовать график целесообразно в том случае, когда в задаче записана система линейных уравнений. Подобные задачи встречаются в средних классах школы. Такие уравнения имеют вид y = a x + b без квадратных членов, а их графики являются прямыми.

Метод подстановки

Алгоритм решения системы уравнений с помощью метода подстановки:

  • выражение одной переменной через другие;
  • подстановка выражения, которое получилось, в начальные уравнения на место выраженной переменной;
  • повторение второго шага до тех пор, пока не будут определены другие переменные.

Рассмотрим последовательность действий на практике. Предположим, что имеется некая система уравнений, которую требуется решить:

2 x + 3 y = 12 3 x — y = 7

Выразим у из второго уравнения:

Выполним подстановку полученного выражения в первое равенство:

2 x + 3 3 x — 7 = 12

Для полученного уравнения с одной переменной несложно найти корни:

2 x + 3 3 x — 7 = 12

2 x + 3 · 3 x — 3 · 7 = 12

2 x + 9 x — 21 = 12

Зная х, выполним подстановку и найдем у:

y = 3 x — 7 = 3 · 3 — 7 = 2 .

Запишем в ответ значения двух переменных.

Ответ: x = 3 ; y = 2 , либо (3;2).

Метод сложения

При сложении левых частей пары (или более) уравнений выражение, полученное в результате, равно сложенным правым частям этих же равенств, согласно формуле:

a = b c = d ⇒ a + c = b + d

В обратную сторону записанное свойство не работает:

a + c = b + d ◃ ≠ ▹ a = b c = d

Таким образом, при решении систем уравнений можно увеличивать обе части уравнения на одинаковое число. Например, сложим первое уравнение с числом с:

a = b c = d ⇒ a + c = b + c

Исходя из того что c=d, можно выполнить замену c на d справа:

a = b c = d ⇒ a + c = b + c ⇒ a + c = b + d .

В качестве примера попробуем решить систему уравнений:

2 x + y = 12 3 x — y = 3

Следуя правилу, суммируем уравнения. В процессе левые части складываем друг с другом. Аналогичным образом поступим с правыми частями равенств. В результате:

2 x + y = 12 3 x — y = 3 ⇒ 2 x ¯ ¯ + y ¯ + 3 x ¯ ¯ — y ¯ = 15 ⇔ 5 x = 15 ⇔ x = 3 .

Получилось избавиться от переменной у. В итоге задача значительно упростилась. Подставим число 3 на место слагаемого с х:

2 x + y = 12 x = 3 ⇔ 2 · 3 + y = 12 x = 3 ⇔ y = 6 x = 3

В следующем примере система уравнений имеет следующий вид:

2 x + 3 y = 13 4 x + 5 y = 23

Заметим, что с помощью сложения задание не получится упростить. В этом случае можно воспользоваться умножением уравнения на какое-либо число, отличное от нуля. Важно выбрать такой множитель, который позволит избавиться от одной из переменных. В этом случае лучше использовать (-2):

2 x + 3 y = 13 · — 2 4 x + 5 y = 23 ⇔ — 4 x — 6 y = — 26 4 x + 5 y = 23

Приступим к сложению:

— 4 x — 6 y = — 26 4 x + 5 y = 23 ⇒ — 4 x — 6 y + 4 x + 5 y = — 26 + 23 ⇔ — y = — 3 ⇔

Выполним подстановку у=3 в первое уравнение:

2 x + 3 y = 13 y = 3 ⇔ 2 x + 9 = 13 y = 3 ⇔ x = 2 y = 3

Задания для самостоятельного решения

Нужно решить систему уравнений:

13 x + 6 y = 7 2 x — 4 y = 6

Выразим х с помощью второго уравнения:

Найти значения переменных:

2 x + 5 y = 10 8 y — 5 x = 57

Из первого равенства выразим х:

2 x + 5 y = 10 2 x = 10 — 5 y

Подставим полученное значение во второе уравнение и запишем ответ.

Дана система уравнений, которую требуется решить:

2 x + 5 y = 10 3 x — 2 y = 1

В данном случае следует умножить первое уравнение на число 2, а второе равенство умножить на число 5:

2 x + 5 y = 10 · 2 3 x — 2 y = 1 · 5 ⇔ 4 x + 10 y = 20 15 x — 10 y = 5

После сложения уравнений остается лишь определить х:

19 x = 25 ⇔ x = 25 19

При подстановке х в какое-либо из двух уравнений можно вычислить у и записать ответ.

Ответ: ( 25 19 ; 28 19 ) .

Требуется найти переменные:

3 y — 4 x = — 13 3 x + 7 y = 56

Здесь следует в первую очередь найти произведение первого уравнения и числа 3, умножить второе уравнение на множитель 4. Далее остается суммировать уравнения и записать ответ.

Нужно решить систему уравнений:

7 x + 3 y = 21 4 y — 5 x = — 15

Множителем для первого уравнения является число 4. Второе уравнение нужно умножить на -3. Полученные равенства следует сложить и записать ответ.

Решить систему уравнений:

6 x — 8 y = — 2 9 x + 10 y = 8

В данном случае предполагается умножение уравнений на дробные числа. Множителем для первого уравнения является дробь 1 4 . Второе уравнение следует умножить на 1 5 :

6 x — 8 y = — 2 · 1 4 9 x + 10 y = 8 · 1 5 ⇔ 6 4 x — 2 y = — 1 2 9 5 x — 2 y = 8 5

Далее выполним сложение:

6 4 x — 2 y = — 1 2 9 5 x — 2 y = 8 5 ⇔ 3 2 x + 9 5 x =-0,5+1,6 ⇔ ⇔ 15 10 x + 18 10 x = 1,1 ⇔ 33 10 x = 1 , 1 ⇔ ⇔ 33 = 11 x x = 3

Путем подстановки определим y:

6 3 — 8 y = — 2 x = 3 ⇔ — 8 y = — 4 x = 3 ⇔ y = 2 x = 3

Найти корни следующих систем уравнений:

2 x + 3 y = 11 3 x + 2 y = 9

3 x — y = 85 5 x + 2 y = 17

x — 3 y = 6 2 y — 5 x = — 4

y 4 — x 5 = 6 x 15 + y 12 = 0

y — x = 5 x + 3 y = 3

Ответ: (1; 3), (17; -34), (0; -2), (-15; 12), (-3; 2).


источники:

http://infourok.ru/material.html?mid=52311

http://wika.tutoronline.ru/algebra/class/9/kak-reshat-sistemy-uravnenij-s-dvumya-peremennymi