Основные приемы преобразования уравнения решения

Общие методы преобразования уравнений

Разделы: Математика

Цели и задачи урока:

  • обобщить и углубить знания по теме;
  • сформировать представление о методах и способах решения алгебраических уравнений на уровне, превышающем уровень государственных образовательных стандартов;
  • формирование навыков умственного труда;
  • развивать качества мышления: гибкость, рациональность, критичность;
  • развитие внимания, логического мышления, аргументированной математической речи, самостоятельности, познавательной активности;
  • воспитание ответственности, воли, упорства в достижении поставленной цели, умение контролировать внимание на всех этапах урока.

Оборудование: кодоскоп, слайды, доклады-сообщения учащихся.

Тип урока: урок формирования знаний, умений и навыков.

Формы обучения: общеклассная, групповая, индивидуальная.

Методы обучения: словесный, наглядный, практические задания, самостоятельная деятельность, проблемно-поисковый.

I. Организационный момент

Мотивационная беседа с учащимися пропедевтической направленности через осознание ими практической значимости изучаемых и применяемых знаний, умений и навыков.

Эпиграф урока: «Час, затраченный на понимание, экономит год жизни». (В. Босс)

II. Актуализация опорных знаний учащихся

1. Работа по основным определениям, понятиям, относящимся к уравнениям (вопросы, составленные на основе курса лекций 1-4 «Уравнения и неравенства в школьном курсе математики» автора П.В. Чулкова, М. Шабунин «Уравнения» – библиотека приложения к газете 1 сентября, дополнительные главы по курсу математики 10 под редакцией З.А. Скопеца);

2. Ответить на вопросы:

– Верно ли, что 5х = 10 х 2 = 8 на множестве действительных чисел, на множестве рациональных чисел?
– Верно ли, что 2х = 10 5х = х 2 ?

3. Алгоритм решения уравнения или как мы решаем уравнения?

III. Решение уравнений

Рассмотрим наиболее часто встречаемые преобразования уравнений.

а) разложение на множители (или расщепление уравнений):

1. х 3 – 4х 2 – 16х + 64 = 0
(х 3 – 4х 2 ) – (16х – 64) = 0
х 2 (х – 4) – 16(х – 4) = 0
(х – 4)(х 2 – 16) = 0
(х – 4) 2 (х + 4) = 0
х1 = 4 или х2 = – 4

2. х 3 + х – 10 = 0 (заслушать предлагаемые учащимися способы)
х 3 + х – 8 – 2 = 0
(х 3 – 8) + (х – 2) = 0
(х – 2)(х 2 + 2х + 4) + (х – 2) = 0
(х – 2)( х 2 + 2х + 5) = 0
(х – 2) = 0 или х 2 + 2х + 5= 0
х1 = 2 т.к. D = –16 2 + х + 1)(х 2 + х + 2) = 12 (Заслушать предлагаемые учащимися способы. Очевидно, что ученики предложат выполнить умножение многочлена на многочлен)

– А какова степень уравнения? А нет ли более рационального способа решения? Посмотрите, как «звучит» способ в заголовке? Что вы заметили?

Возможны варианты: x 2 + x = t или x 2 + x + 1 = t

Пусть x 2 + x + 1 = t
Тогда t (t + 1) = 12
t 2 + t – 12 = 0, получаем t1 = – 4; t2 = 3.
Отсюда: х 2 + х + 1 = – 4 или х 2 + х + 1 = 3
х 2 + х + 5 = 0 х 2 + х – 2 = 0
т.к. D = –19 0 корней нет.
Т.к. сумма коэффициентов a + b + c = 0, то х1 = 1; х2 = c/a х2 = – 2

2. Используйте этот приём для решения следующего уравнения:

; ОДЗ: х =/= 0, х =/= – 4, х =/= – 2.
Запишем уравнение иначе:
Пусть x 2 + 4x = t, тогда
Получим: 1 . 5(t + 4) – 1 . t . 5 = 4 . t . (t + 4)
5t + 20 – 5t = 4t 2 + 16t
4t 2 + 16t – 20 = 0
t 2 + 4t – 5 = 0 D = 36 > 0 2 корня. По сумме коэффициентов: 1 + 4 – 5 = 0 имеем: t1 = 1; t2 = c/a t2 = – 5. Оба корня принадлежат ОДЗ уравнения с переменной t.
Отсюда: x 2 + 4x = 1 или x 2 + 4x = – 5
x 2 + 4x – 1 = 0 x 2 + 4x + 5 = 0
D = 20 > 0 2 корня т.к. D = – 4 2 + 3х + 3)(х 2 – 2х + 3) = 24х 2

(Посмотреть на реакцию учащихся)
Для введения новой переменной «мешает» х 2 в правой части, нет никакого смысла применять замену х 2 = t. Как же преобразовать уравнение? Причём так преобразовать, чтобы правая часть не содержала х 2 . (как в уравнении 1) этого метода) Выслушать мнение учащихся. Достаточно разделить почленно уравнение на х 2 , т.к. х = 0 не является корнем данного уравнения!

(х 2 + 3х + 3)(х 2 – 2х + 3) = 24х 2 х 2 =/= 0

Вот теперь пусть , тогда (t + 3)(t – 2) = 24
t 2 + t – 30 = 0, получаем: t1 = – 6; t2 = 5.
Отсюда: = – 6 или = 5
х 2 + 6х + 3 = 0 или х 2 – 5х + 3 = 0
D = 24 > 0 2 корня D = 13 > 0 2 корня

Ответ: ; .

4. А вот ещё одно очень интересное уравнение:

–1 и + 3 можно представить в виде сумм, одно из слагаемых которых будет 1 : – 1 = – 2 + 1 и 3 = 2 + 1.
Тогда х – 1 = х – 2 + 1 = (х + 1) – 2
х + 3 = х + 2 + 1 = (х + 1) + 2, получим уравнение:
((х +1) – 2) 4 + ((х +1) + 2) 4 = 82, пусть х + 1 = t,
Тогда (t – 2) 4 + (t + 2) 4 = 82.

На первый взгляд, новое уравнение не отличается принципиально от данного: мы получили четвёртую степень двучлена, но вторые слагаемые двучлена отличаются только знаками, что намного упрощает конечный вид и преобразования полученного уравнения.

В результате преобразований получается биквадратное уравнение относительно переменной t: t 4 + 24 t 2 – 25 = 0; пусть t 2 = y, тогда y 2 + 24y – 25 = 0

Корни этого уравнения 1 и – 25.
Отсюда: t 2 = 1 или t 2 = – 25
t1,2 = ± ( n + a1x n – 1 + a2x n – 2 + …+ a2x 2 + a1x + a0 = 0, где коэффициенты членов, равноотстоящих от концов, равны между собой, называют симметрическими уравнениями.

Свойства симметрических уравнений:

а) если дано уравнение нечётной степени, то х = – 1 – корень уравнения;
б) уравнение чётной степени 2n с помощью подстановки v = x + 1/x сводится к уравнению степени n.

Рассмотрим решение на конкретном уравнении:

2х 5 + 5х 4 – 13х 3 – 13х 2 + 5х + 2 = 0 да, по определению это симметрическое уравнение нечётной степени. Значит х = – 1 – корень исходного уравнения; разложим его на множители:
(х + 1)(2х 4 + 3х 3 – 16х 2 + 3х + 2) = 0;
работаем со вторым множителем:
2х 4 + 3х 3 – 16х 2 + 3х + 2 = 0 ¦: х2 =/= 0 2х 2 + 3х – 16 + 3 . 1/х + 2 . 1/х 2 = 0.
Группируем: 2(х 2 + 1/х 2 ) + 3(х + 1/х) – 16 = 0. Пусть х + 1/х =, тогда х 2 + 1/х 2 = t 2 – 2,
отсюда: 2(t 2 – 2) + 3t – 16 = 0 и далее 2t 2 + 3t – 20 = 0,
решая это уравнение, получим: t1= – 4 и t2 = – 5/2; откуда х + 1/х = – 4 или х + 1/х = – 5/2.
Решая эти уравнения, получим: х1,2 = – 2 ± , х3 = 2, х4 = 1/2.

Ответ: – 1, – 2 ± , 2, 1/2.

2. Определение. Уравнение вида a0(u(x)) n + a1(u(x)) n – 1 v(x) + a2(u(x)) n – 2 (v(x)) 2 +…+ ak(u(x)) n – k (v(x)) k +…+ a0(v(x)) n = 0 называют однородным уравнением степени n относительно u(x) иv(x).

Решите уравнение: (х – 2) 2 (х + 1) 2 – (х – 2)(х 2 – 1) – (х – 1) 2 = 0
Пусть u = (х – 2)(х + 1) и v = х – 1, получаем: u 2 – uv – 2v 2 = 0.
Рассмотрим все возможные случаи:

а) v = 0, тогда х = 1, но 1 не является корнем исходного уравнения (была проверка!);
б) v =/= 0, тогда заменой p = u/v получаем уравнение: p 2 – p – 2 = 0, откуда p1 = –1, p2 = 2. т.е.
Решаем эти уравнения, получаем: х1 = 0; х2 = 3; х3,4 = + .

Ответ: 0; 3; + .

VI. Итог урока

Рефлексия: беседа с учащимися о занятии, что необходимо школьнику, чтобы заметить тот или иной приём, рациональный в данном конкретном случае, что было трудно, какой приём требуется ещё повторить?

VII. Домашнее задание:

Решите уравнения:

  • х 4 + (1 – х) 4 = 1/8;
  • (х + 2)(х – 3)(х – 1)(х + 6) = 40х 2
  • х 2 (х – 1) 2 + х(х 2 – 1) = 2(х + 1) 2 .

Проверочная работа.

1) Равносильны ли уравнения

2) Какое из двух уравнений является следствием другого: х 2 = 9 или х = 3?

3) Решите уравнения:

  1. х 3 – 6х 2 + 11х – 6 = 0;
  2. х 6 – 9х 3 + 8 = 0;
  3. (х 2 – 6х) 2 – 2(х – 3) 2 = 81;
  4. х(х + 3)(х + 5)(х + 8) = 10;
  5. х 4 – 4х 3 + 5х 2 – 4х + 1 = 0;
  6. ;
  7. (х 2 + х + 4) 2 + 8х(х 2 + х + 4) + 15х 2 = 0;
  8. .

1) нет,
2) первое,
3)

  1. 1; 2; 3,
  2. 1; 2,
  3. 3; 3 + 2,
  4. – 4 +,
  5. ,
  6. 0,
  7. – 2; – 3 +,
  8. 7 +.

Основные приемы решения уравнений

Практическое занятие по теме: Основные приемы решения уравнений

Просмотр содержимого документа
«Основные приемы решения уравнений»

Практическое занятие Приложение 29

Основные приемы решения уравнений.

Корни уравнений. Равносильность уравнений. Преобразование уравнений.

1) Теоретический этап. Опорный конспект.

Уравнением с одной переменной x называется выражение f(x) = g(x), содержащее переменную величину x и знак равенства.

Число a называется корнем уравнения f(x) = g(x), если при подстановке этого числа в уравнение получается верное числовое равенство.

Решение уравнения это процесс, состоящий в основном в замене заданного уравнения другим уравнением, ему равносильным. Такая замена называется тождественным преобразованием.

Основные тождественные преобразования:

Замена одного выражения другим, тождественно равным ему.

Например, уравнение (3x+ 2) 2 = 15x+10 можно заменить следующим равносильным:

Перенос членов уравнения из одной стороны в другую с обратными знаками.

Так, в предыдущем уравнении мы можем перенести все его члены из правой части в левую со знаком « – »: 9x 2 + 12x + 4 15x – 10 = 0, после чего получим: 9x 2 3x – 6 = 0 .

Умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля. Уравнение x – 1 = 0 имеет единственный корень x = 1. Умножив обе его части на x – 3 , мы получим уравнение (x – 1)(x – 3 ) = 0, у которого два корня: x = 1 и x = 3. Последнее значение не является корнем заданного уравнения x – 1 = 0. Это так называемый посторонний корень. И наоборот, деление может привести к потере корня. Так, если (x – 1)(x – 3) = 0 является исходным уравнением, то корень x = 3 будет потерян при делении обеих частей уравнения на x – 3 .

Можно возвести обе части уравнения в нечетную степень или извлечь из обеих частей уравнения корень нечетной степени. Необходимо помнить, что: а) возведение в четную степень может привести к приобретению посторонних корней;

б) неправильное извлечение корня четной степени может привести к потере корней.

Уравнение 7x = 35 имеет единственный корень x = 5. Возведя обе части этого уравнения в квадрат, получим уравнение: 49x 2 = 1225 , имеющее два корня: x = 5 и x = 5. Последнее значение является посторонним корнем.

Неправильное извлечение квадратного корня из обеих частей уравнения 49x 2 = 1225 даёт в результате 7x = 35,и мы теряем корень x = 5. Правильное извлечение квадратного корня приводит к уравнению: | 7x | = 35, следовательно, к двум случаям: 1) 7x = 35,

тогда x = 5; 2) 7x = 35, тогда x = 5. Следовательно, при правильном извлечении квадратного корня мы не теряем корней уравнения.

1) Если показательное уравнение сводится к виду a x = a b (1) где a 0 и a ≠1, то оно имеет единственный корень х = b.

2) Иногда, чтобы привести показательное уравнение к виду (1), необходимо в левой части уравнения вынести за скобки общий множитель а х , например:

3) Некоторые показательные уравнения заменой а х = t сводятся к квадратным.

Надо помнить, что t 0, так как показательная функция не может принимать отрицательные значения.

Чаще всего при решении логарифмического уравнения его приводят к виду

Решив полученное уравнение, следует сделать проверку корней, чтобы исходное уравнение не потеряло смысл.

2) Подготовительный этап. Перепишите и заполните пропуски:

Пример 1. Решить уравнение: 9 х – 7 3 х = — 12

9 х – 7 3 х = — 12; Пусть 3 х = t , t 0; t 2 — 7t + 12=0; D = 1; t1 = 3, t 2= 4.

Делаем обратную замену 1) 3 x = 3; 2) 3 x = 4

x1 = …; x 2 =

Ответ: х1 = 1; x 2 = .

Пример 2. Решить уравнение:

Решение: . Уравниваем основания : .

Пример 3. Решить уравнение: log5 (x 2 — 10) = log 5 9x

Решение: log5 (x 2 — 10) = log 5 9x; x 2 — 9x – 10 = 0, D = …; x1=10, x2= -1

Проверка: при х = 10, log5 (10 2 — 10) = log 5 (9 ∙10) – верно

Пример 4. Решить уравнение: log 7 (x 2 + 6x) = 1;

Решение: log 7 (x 2 + 6x) = 1;

x 2 + 6x =7 1 ; x 2 + 6x – 7 = 0; D = 64; x1 = — 7 u x2 = …

Проверка: при х = — 7, log 7 ((- 7) 2 + 6 ∙(-7)) = 1 – верно

при х = 1, log 7 (1 2 + 6 ∙1) = 1 – верно

Пример 5. Решить уравнение log2 (x – 5) + log2 (x +2) = 3

Используем свойство логарифмов: log2(( x-5)(x + 2)) = 3; (x-5)(x+2) = 2 3 ; (x-5)(x+2) = 8;

х 2 + …х – 5х – 10 = 8; x 2 – 3x — 18 = 0; D = …; x1 = – 3; x2 = ….

Проверка: при x = – 3, log2 (– 3 – 5) + log2 (– 3 +2) = 3 – неверно

При х = 6, log2 (6 – 5) + log2 (6 + 2) = 3 – верно

Пример 6. Решить уравнение: .

Решение:

Пусть , тогда у 2 – 4у + 3 = 0; D = …; у1 = 1; у2 = …

Сделаем обратную подстановку:

1) = 1; х = 2; 2) = 3; х = 2 3 ; х = …

Ответ: х = 2, х = 8.

3) Практический этап.

1. Решить уравнение: 4 х – 6 ∙ 2 х = – 8

2. Решить уравнение:

3. Решить уравнение: log3 (x 2 + 6) = log3 5x

4. Решить уравнение: log12 (x 2 – x) = 1

5. Решить уравнение: + = 0

6. Решить уравнение: log 2 2 Х – 4 log 2 Х = 12

4) Дополнительные задания *

1. Укажите промежуток, которому принадлежит корень уравнения: + = 3

1) [ – 10; – 15] ; 2) (5; 10); 3) (10; 13); 4) [ 10; 15]

2. Укажите промежуток, которому принадлежит корень уравнения: х = 1

1) [ 2; 5] ; 2) (– 2; – 1); 3) [– 1; 1]; 4) [ 1; 2]

3. Найдите сумму корней уравнения: ( ) 2х + 5∙ ( ) х – 24 = 0

4.Укажите промежуток, которому принадлежит корень уравнения: log 5 (3х – 1) = 3

1) (15; 20) ; 2) [ 0; 2]; 3) (20; 40); 4) [ 40; 50]

5. Найдите сумму корней уравнения: 3 2х – 4 3 х + 3 = 0

6. Решите уравнение lg(5х + 11) – lg( ) = lg13

7. Решите уравнение:

Методы решения уравнений — обзор

В этой статье дан краткий обзор всех основных методов решения уравнений. Здесь также приведены ссылки на материалы с подробной информацией по каждому методу. Это дает возможность познакомиться со всеми методами решения уравнений, а в случае необходимости — изучить методы решения уравнений углубленно.

Метод введения новой переменной (замены переменной)

Метод введения новой переменной, он же метод замены переменной, позволяет решать уравнения f(g(x))=0 или f1(g(x))=f2(g(x)) , где f , f1 и f2 – некоторые функции, а x – неизвестная переменная, а также уравнения, которые могут быть приведены к указанному виду. Состоит метод во введении новой переменной t=g(x) . Введение переменной позволяет от исходного уравнения f(g(x))=0 или f1(g(x))=f2(g(x)) перейти к уравнению с новой переменной f(t)=0 или f1(t)=f2(t) соответственно. Дальше находятся корни полученного уравнения с новой переменной: t1, t2, …, tn . После этого осуществляется возврат к старой переменной, для чего составляется совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn . Решение этой совокупности дает интересующее нас решение исходного уравнения.

Например, метод введения новой переменной позволяет решить уравнение . Здесь стоит принять . Это позволяет перейти от исходного уравнения к квадратному уравнению t 2 −3·t+2=0 с новой переменной t , которое имеет два корня t1=1 и t2=2 . Обратная замена происходит путем составления совокупности двух уравнений и . Это рациональные уравнения. Решением первого является x=2 , а решением второго является x=1,5 . Так методом введения новой переменной получено решение исходного уравнения: 1,5 , 2 .

Подробное описание метода введения новой переменной, включающее обоснование метода, алгоритм решения уравнений этим методом и примеры решения характерных уравнений, дано в этой статье.

Метод разложения на множители

Метод разложения на множители предназначен для решения уравнений f1(x)·f2(x)·…·fn(x)=0 , где f1(x), f2(x),…, fn(x) – некоторые выражения, x – переменная. То есть, методом разложения на множители решаются уравнения, в левой части которых находится произведение нескольких выражений, а в правой – нуль. Суть метода состоит в замене решения уравнения f1(x)·f2(x)·…·fn(x)=0 решением совокупности уравнений f1(x)=0, f2(x)=0, …, fn(x)=0 на области допустимых значений (ОДЗ) для исходного уравнения.

Приведем простой пример. Уравнение может быть решено методом разложения на множители. Переходим от исходного уравнения к совокупности двух уравнений и . Иррациональное уравнение имеет единственное решение x1=1 . Логарифмическое уравнение тоже имеет единственное решение x2=4 . Значит, совокупность уравнений имеет два решения x1=1 , x2=4 . Но области допустимых значений для исходного уравнения, которой является множество (3, +∞) , принадлежит лишь одно из решений x1=1 , x2=4 , а именно, x2=4 . Оно и является единственным корнем уравнения .

Подробное описание этого метода и решения других характерных примеров смотрите в статье «метод разложения на множители».

Метод решения уравнений «дробь равна нулю»

Из названия понятно, что этот метод используется при решении уравнений f(x)/g(x)=0 . Например, он позволяет решить уравнение . Метод состоит в переходе от решения уравнения f(x)/g(x)=0 к решению уравнения f(x)=0 на ОДЗ для исходного уравнения. Следовательно, чтобы решить уравнение , надо решить уравнение (x−1)·(x 2 −4)=0 на ОДЗ для исходного уравнения.

Обоснование метода и примеры с решениями смотрите здесь.

Метод решения уравнений через преобразования

Метод базируется на преобразовании уравнений с целью выстраивания последовательностей равносильных уравнений и уравнений-следствий со сравнительно простыми последними уравнениями, по решениям которых находятся решения исходных уравнений.

Например, для решения уравнения 3·x 4 −48=0 последовательно проводятся два преобразования: переносится слагаемое −48 из левой части уравнения в правую с противоположным знаком, после чего проводится деление обеих частей уравнения на число 3 . В результате получается равносильное уравнение x 4 =16 , причем очень простое в плане решения. Оно имеет два корня x1=−2 и x2=2 . Они и составляют решение исходного уравнения.

Вот другой пример. Замена выражения в левой части уравнения тождественно равным выражением (x−1)·(x+2) дает уравнение-следствие (x−1)·(x+2)=0 , имеющее два корня x1=1 и x2=−2 . Проверка показывает, что только первый корень является корнем исходного уравнения, а второй корень – посторонний.

Какие преобразования используются при решении уравнений? Когда нужно делать проверку для отсеивания посторонних корней, а когда такую проверку делать необязательно? Ответы на эти и многие другие вопросы по теме есть в этом материале.

Метод решения уравнений, сводящихся к числовым равенствам

Иногда в результате преобразования уравнений получаются числовые равенства. Например, уравнение сводится к верному числовому равенству 0=0 , а уравнение сводится к неверному числовому равенству 0=5 . Решением уравнений, сводящихся к верным числовым равенствам, является множество, совпадающее с ОДЗ для исходного уравнения. Так, решением уравнения является множество x≥0 . А уравнения, сводящиеся к неверным числовым равенствам, не имеют решений. То есть, уравнение не имеет решений.

Здесь есть один нюанс. Если среди преобразований, приводящих уравнение к верному числовому равенству, есть возведение обеих частей уравнения в одну и ту же четную степень, то нельзя утверждать, что решением уравнения является любое число из ОДЗ. Этот нюанс разобран в статье «решение уравнений, сводящихся к числовым равенствам».

Функционально-графический метод

Обзор методов решения уравнений продолжаем функционально-графическии методом. Этот метод предполагает использование функций, отвечающих частям решаемого уравнения, а точнее, их графиков и свойств. Можно выделить три основных направления функционально-графического метода:

  • Графический метод
  • Метод, базирующийся на возрастании-убывании функций
  • Метод оценки

Давайте рассмотрим их.

Графический метод

Первое направление базируется на использовании графиков функций. Это так называемый графический метод решения уравнений. По этому методу, во-первых, выполняется построение в одной прямоугольной системе координат графиков функций, отвечающих частям уравнения. Во-вторых, по чертежу определяется количество точек пересечения графиков, сколько точек пересечения – столько и корней у решаемого уравнения. В-третьих, определяются абсциссы точек пересечения – это значения корней.

Например, графически можно решить уравнение . Из чертежа, приведенного ниже, видно, что графики имеют единственную точку пересечения с абсциссой 2 . Это единственный корень уравнения.

Метод, базирующийся на возрастании-убывании функций

Второе направление в своей основе имеет использование свойств возрастающих и убывающих функций. Соответствующий метод используется тогда, когда есть возможность подобрать корень уравнения и доказать возрастание функции, отвечающей одной из частей уравнения, и убывание функции, отвечающей другой части уравнения. В этом случае подобранный корень является единственным.
Приведем пример. Для уравнения 3 (1−x) 3 +1=2 x несложно подобрать корень, им является число 1 . Также несложно обосновать убывание функции, соответствующей левой части уравнения, и возрастание функции, отвечающей правой части уравнения. Это доказывает единственность подобранного корня.

За более полной информацией следуйте сюда

Метод оценки

Третье направление основано на использовании свойств ограниченности функций. Это так называемый метод оценки. Согласно этому методу, в первую очередь нужно оценить значения выражений, находящихся в левой и правой части уравнения. Если множества, соответствующие полученным оценкам, не пересекаются, то уравнение не имеет корней. Если множества имеют конечное число общих элементов t1 , t2 , …, tn , то решение уравнения f(x)=g(x) заменяется решением совокупности систем , , …, . Если же множества, соответствующие оценкам имеют бесконечно много общих элементов, то надо либо уточнять оценки, либо искать другой метод решения.

Например, методом оценки можно решить уравнение . Значения левой части этого уравнения не превосходят нуля, а значения правой части не меньше нуля. Это позволяет перейти к системе , решение которой дает искомое решение уравнения.

Метод освобождения от внешней функции

Метод освобождения от внешней функции используется для решения уравнений h(f(x))=h(g(x)) , где f , g и h – функции, причем функция y=h(t) принимает каждое свое значение по одному разу, в частности, строго возрастает или строго убывает, а x – независимая переменная. Этот метод состоит в переходе от уравнения h(f(x))=h(g(x)) к уравнению f(x)=g(x) на ОДЗ для исходного уравнения.

Например, методом освобождения от внешней функции можно решить уравнение . Здесь в качестве внешней функции выступает y=h(t) , где . Эта функция возрастающая как сумма двух возрастающих функций и , значит, каждое свое значение она принимает по одному разу. Это позволяет перейти от исходного уравнения к уравнению . Равносильные преобразования позволяют привести последнее уравнение к квадратному уравнению x 2 +x−2=0 , которое имеет два корня x1=−2 и x2=1 . Из этих корней только x1=−2 принадлежит ОДЗ для исходного уравнения. Следовательно, x1=−2 – единственный корень исходного уравнения.

Рекомендуем детально разобраться с этим методом решения уравнений, обратившись к материалу статьи «метод освобождения от внешней функции».

Метод решения уравнений через ОДЗ

Через ОДЗ решаются уравнения, области допустимых значений которых являются либо пустыми множествами, либо состоят из конечного количества чисел. Когда ОДЗ есть пустое множество, уравнение не имеет решений. Когда ОДЗ состоит из конечного количества чисел, то следует по очереди проверить эти числа через подстановку. Те из них, которые удовлетворяют решаемому уравнению являются его корнями, остальные – не являются.

Например, уравнение не имеет решений, так как ОДЗ для него есть пустое множество. А для уравнения ОДЗ состоит из двух чисел −1 и 7 . Проверка подстановкой показывает, что −1 является корнем уравнения, а 7 – не является.

Более полная информация по этому методу решения уравнений содержится в этой статье.

Метод возведения обеих частей уравнения в одну и ту же степень

Этот метод, в основном, используется для решения иррациональных уравнений. Он заключается в возведении обеих частей уравнения в одну и ту же степень с целью избавления от корней. Например, возведение обеих частей уравнения в квадрат дает уравнение без корня 1−5·x=(x−3) 2 . Возведение в нечетную степень дает равносильное уравнение. Возведение в четную степень в общем случае дает уравнение-следствие, поэтому, при этом необходимо позаботиться об отсеивании посторонних корней. Причем отсеивание следует проводить способом, не связанным с ОДЗ, обычно, через проверку подстановкой, так как возведение частей уравнения в четную степень может приводить к появлению посторонних корней в рамках ОДЗ.

Аналогично разбираемый метод может использоваться и для решения уравнений, в которых фигурируют степени с рациональными и иррациональными показателями. Решения соответствующих примеров смотрите здесь.

Метод решения уравнений по определению логарифма

По определению логарифма, как правило, решают уравнения следующего вида logh(x)f(x)=g(x) , например, log2(x 2 +4·x+3)=3 , log2(9−2 x )=3−x , logx(3·x lgx +4)=2·lgx и т.п.

Согласно методу решения уравнений по определению логарифма, решение уравнения logh(x)f(x)=g(x) заменяется решением уравнения f(x)=(h(x)) g(x) на ОДЗ переменной x для исходного уравнения. Например, от уравнения logx(3·x lgx +4)=2·lgx можно перейти к уравнению 3·x lgx +4=x 2·lgx на ОДЗ для исходного уравнения.

Более полная информация содержится в основной статье.

Метод потенцирования

Методом потенцирования решаются логарифмические уравнения, обе части которых являются логарифмами по одному и тому же основанию, например, lgx=lg(3·x+5) , и т.п. Метод заключается в замене решения уравнения logh(x)f(x)=logh(x)g(x) решением уравнения f(x)=g(x) на ОДЗ для исходного уравнения. По этому методу от уравнения lgx=lg(3·x+5) следует перейти к уравнению x=3·x+5 на ОДЗ для исходного уравнения, которая определяется двумя условиями: x>0 , 3·x+5>0 .

Обоснование метода и примеры с подробными решениями смотрите в этой статье.

Метод логарифмирования

Метод подразумевает логарифмирование обеих частей уравнения по одному и тому же основанию. К нему следует прибегать тогда, когда логарифмирование позволяет избавиться от степеней с переменной в показателях. В частности, его можно использовать для решения показательных уравнений, обе части которых являются степенями с одинаковыми основаниями, например, 5 1−x =5 2·x+1 . Почленное логарифмирование этого уравнения дает очень простое уравнение 1−x=2·x+1 , решение которого дает решение исходного уравнения.

Также метод подходит для решения показательных уравнений, степени в которых имеют разные основания и отличающиеся показатели, например, . Более того, метод логарифмирования является чуть ли не основным методом решения показательно-степенных уравнений, вроде таких x lgx−1 =100 , .

Более детальная информация и примеры с решениями есть в этом материале.


источники:

http://multiurok.ru/files/osnovnye-priemy-resheniia-uravnenii.html

http://www.cleverstudents.ru/equations/methods_of_solving_equations.html