Основные приемы решения уравнений разложение на множители

Решение уравнений методом разложения на множители

Решение уравнений разложения на множители (метод расщепления) – это способ решения уравнений при котором мы стремимся уравнение свести их к виду:

а затем каждую скобку приравнять к нулю и решить как отдельное уравнение.

Вынесем за скобку икс.

Разобьем уравнение на два простейших.

В первом корень уравнения уже понятен, во втором надо перенести \(5\) в правую сторону.

Решение методом разложения на множители основывается на простой идее:

В результате умножения ноль можно получить, только если один из множителей равен нулю.

Попробуйте придумать два числа, которые при умножении дают ноль. Вы убедитесь, что хотя бы одно из них обязательно должно быть нулем.

Этот метод решения уравнений один из самых популярных, поэтому освоить его очень важно для тех, кто планирует иметь четверки и пятерки. А для освоения этого метода, конечно, надо уметь раскладывать на множители как Бог: знать все формулы сокращенного умножения, легко выносить множители за скобки, уметь применять метод группировки и т.д. Подробнее о всех способах разложения на множители смотри здесь .

Пример(задание из ОГЭ). Решите уравнение \(x^3+4x^2-4x-16=0\).
Решение:

Перед нами кубическое уравнение.
Применим метод группировки: из первой пары слагаемых вынесем \(x^2\), а из второй – минус четверку.

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №12. Решение алгебраических уравнений разложением на множители.

Перечень вопросов, рассматриваемых в теме

1) типы алгебраических уравнений;

2) решение алгебраические уравнения методом разложения на множители;

3) методы решения алгебраических уравнений.

Глоссарий по теме

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида P(x1, x2, …, xn)=0, где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнение над множеством F.

Степенью алгебраического уравнения называют степень многочлена P.

Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Биквадратными называются уравнения вида ах 4 + bх 2 + с = 0, где а, b, с – заданные числа, причем, а ≠ 0.

Симметрическим уравнением 3-ей степени называют уравнение вида: ax 3 + bx 2 + bx + a = 0, где a, b – заданные числа.

Уравнение вида a n x n +a n-1 x n-1 +…+a 1 x+a 0 =0 называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, т.е. a n-1 =a k , при k=0, 1, …, n.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Давайте вспомним, что такое алгебраическое уравнение?

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида P(x1, x2, …, xn)=0, где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого поля F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнение над полем F.

Степенью алгебраического уравнения называют степень многочлена P.

является алгебраическим уравнением седьмой степени от трёх переменных (с тремя неизвестными) над полем вещественных чисел.

Связанные определения. Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Примеры и разбор решения заданий тренировочного модуля

  1. Алгебраические уравнения, решаемые разложением на множители:

D(–2) : ,

Можно догадаться, что число х1 = –1 является корнем этого уравнения, так как –1 + 3 – 2 = 0.

х + 1 = 0 или х 2 –х–2 = 0;

х1 = –1 х2,3 = ;

х2,3 = ;

x 3 + х 2 – х 2 – х – 2x – 2 = 0;

(x 3 + х 2 ) – (х 2 + х) – 2(x + 1) = 0;

х 2 (х + 1) – х(х + 1) – 2(х + 1) = 0;

(х + 1) (х + 1) (х –2) = 0;

(х –2) = 0;

  1. Уравнения, сводящиеся к алгебраическим
    1. Биквадратные уравнения

На прошлом уроке мы познакомились с данным видом уравнений

Определение. Биквадратными называются уравнения вида ах 4 + bх 2 + с = 0, где а, b, с – заданные числа, причем, а ≠ 0.

Метод решения

Биквадратное уравнение приводится к квадратному уравнению при помощи подстановки у=х 2 .

Новое квадратное уравнение относительно переменной у: ay 2 +by+c=0.

Решая это уравнение, мы получаем корни квадратного уравнения

Решая эти два уравнения (y1=x1 2 и y2=x1 2 ) относительно переменной x, мы получаем корни данного биквадратного уравнения.

Порядок действий при решении биквадратных уравнений

  1. Ввести новую переменную у=х 2
  2. Подставить данную переменную в исходное уравнение
  3. Решить квадратное уравнение относительно новой переменной
  4. После нахождения корней (y1; y2) подставить их в нашу переменную у=х 2 и найти исходные корни биквадратного уравнения

х 4 – 8х 2 – 9 = 0.

Решение: Пусть у = х 2 , где у 0; у 2 – 8у – 9 = 0;

По формулам Виета:

Первое решение отбрасываем ( у 0),

а из второго находим х1 = –3; х2 = 3.

2 Симметрические уравнения

Решение симметрических уравнений рассмотрим на примере симметрических уравнений третьей степени.

Симметрическим уравнением 3-ей степени называют уравнение вида ax 3 + bx 2 + bx + a = 0, где a, b – заданные числа.

Для того, чтобы успешно решать уравнения такого вида, полезно знать и уметь использовать следующие простейшие свойства симметрических уравнений:

1 0 . У любого симметрического уравнения нечетной степени всегда есть корень, равный -1.

Действительно, если сгруппировать в левой части слагаемые следующим образом: а(х 3 + 1) + bx(х + 1) = 0, то есть возможность вынести общий множитель, т.е.

(х + 1)(ах 2 + (b – а)x + а) = 0, поэтому,
х + 1 = 0 или ах 2 + (b – а)x + а = 0,

первое уравнение и доказывает интересующее нас утверждение.

2 0 . У симметрического уравнения корней, равных нулю, нет.

3 0 . При делении многочлена нечетной степени на (х + 1) частное является снова симметрическим многочленом.

х 3 + 2x 2 + 2х + 1 = 0.

Решение: У исходного уравнения обязательно есть корень х = –1.

Разлагая далее левую часть на множители, получим

(х + 1)(x 2 + х + 1) = 0.

x 2 + х + 1 = 0 не имеет корней.

2 Возвратные уравнения

Уравнение вида a n x n +a n-1 x n-1 +…+a 1 x+a 0 =0 называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, т.е. a n-1 =a k , при k=0, 1, …, n.

Рассмотрим возвратное уравнение четвёртой степени вида

ax⁴ + bx³ + cx² + bx + a = 0, где a, b и c — некоторые числа, причём a ≠ 0. Оно является частным случаем уравнения ax⁴ + bx³ + cx² + kbx + k²a = 0 при k = 1.

Порядок действий при решении возвратных уравнений вида ax 4 + bx 3 + cx 2 + bx + a = 0:

  • разделить левую и правую части уравнения на . При этом не происходит потери решения, так как x = 0 не является корнем исходного уравнения;
  • группировкой привести полученное уравнение к виду

  • ввести новую переменную , тогда выполнено
    , то есть ;

в новых переменных рассматриваемое уравнение является квадратным: at 2 +bt+c–2a=0;

  • решить его относительно t, возвратиться к исходной переменной.

Решение: Разделим на x 2 , получим:

Введем замену:
Пусть

Урок математики. Тема: «Методы решения уравнений»

Разделы: Математика

“Жизнь состоит из одних неизвестных”.

— повторить решение уравнений методом разложения на множители и методом введения новой переменной;

— сформировать у учащихся умение решать уравнения рассмотренными методами.

— развивать умение анализировать и делать выводы;

— развивать у учащихся применять теоретические знания на практике.

воспитывать сознательное отношение к усвоению учебного материала;

— воспитывать умение контролировать внимание на всех этапах урока.

Тип урока: урок-лекция.

1. Организационный момент.

Сегодня мы поговорим об общих идеях, общих методах, которые пронизывают всю школьную линию уравнений с VII по XI класс. При решении уравнений эти методы нужно постоянно держать в поле своего внимания. Мы рассмотрим два метода: метод разложения на множители и метод введения новых переменных. Все уравнения взяты из сборника экзаменационных заданий за курс средней школы.

Метод разложения на множители

Суть этого метода заключается в следующем: пусть надо решить уравнение f(х) = 0 и пусть f(х) = f1(х) · f2(х) · f3(х). Тогда уравнение f(х) = 0 можно заменить совокупностью более простых уравнений:

Найдя корни уравнений этой совокупности и отобрав из них те корни, которые принадлежат области определения уравнения f(х) = 0, мы получим корни исходного уравнения.

В рассмотренном примере разложение на множители уже было произведено. Но чаще встречаются такие ситуации, когда дано уравнение f(х) = 0 и надо преобразовать выражение f(х) к виду f(х) = f1(х) · f2(х) · f3(х) с тем, чтобы превратить данное уравнение в совокупность более простых. Поэтому полезно вспомнить приемы разложения на множители. В школе мы их изучаем некомпактно: в VIII классе – один прием, в IX – еще два, в X – XI классах еще один-два. Перечислю набор изученных приемов:

  • вынесение общего множителя за скобки;
  • способ группировки;
  • использование формул сокращенного умножения;
  • разложение на множители квадратного трехчлена ах 2 + вх + с = 0 = а (х – х1)(х – х2). где х1, х2 – корни этого трехчлена.

Иногда прибавляются искусственные приемы:

  • представление одного из слагаемых в виде некоторой суммы;
  • прибавление и вычитание одного и того же выражения с целью последующей перегруппировки слагаемых.

Метод разложения на множители особенно активно используются для двух классов уравнений рациональных и тригонометрических. В большинстве случаев рациональные уравнения преобразуются к виду f(х) = 0, где f(х) – многочлен. Примеры такого рода мы уже рассмотрели. Что касается тригонометрических уравнений, то успешное использование метода разложения на множители для их решения зависит от выбора той или иной формулы тригонометрии. Можно ли по этому поводу предложить какие-либо полезные советы? Можно. Тригонометрические выражения во многих случаях подчиняются трем “законам”, которые сформулируем в шутливой форме:

Первый закон: “Увидел сумму – делай произведение”.

Второй закон: “Увидел произведение – делай сумму”.

Третий закон: “Увидел квадрат – понижай степень”.

Запомните советы. Если вы не знаете, с чего начать преобразование тригонометрического выражения, за что “зацепиться”, то начните с одного из этих “законов”.

Метод введения новых переменных

Суть метода очень проста: если уравнение f (х) = 0 удалось преобразовать к виду φ(g(х)) = 0, то нужно ввести новую переменную у = g(х), решить уравнение φ(у) = 0, а затем рассмотреть совокупность уравнений:

где у1, у2,…уn – корни уравнения φ(у) = 0. Умение удачно ввести новую переменную важный элемент математической культуры. Новая переменная в уравнениях иногда действительно очевидна, но иногда ее трудно увидеть, а можно выявить лишь в процессе каких-либо преобразований.

Итак, повторяя два метода решения уравнений, мы вспомнили много интересных искусственных приемов, которые обогащают алгебраический арсенал каждого, кто действительно хочет уметь решать уравнения.


источники:

http://resh.edu.ru/subject/lesson/3785/conspect/

http://urok.1sept.ru/articles/624376