Основные уравнения гемодинамики с раскрытием всех

Законы гемодинамики.

Гемодинамика – раздел физиологии, изучающий причины, условия и механизмы движения крови в сердечно-сосудистой системе.

Движение крови по кровеносным сосудам подчиняется законам гемодинамики. В свою очередь, их можно рассматривать, как частный случай гидродинамики. Т.е. в основе законов движения крови лежат физические законы движения жидкости (воды) по сосудам (имеются в виду, не кровеносные сосуды)

Основным условием кровотока, как и в гидродинамике, является градиент давления между начальными и конечными отделами системы сосудов.

Давление в кровеносных сосудах создается работой сердца. Благодаря его насосной деятельности создается давление крови, которое способствует ее продвижению по сосудам. Во время систолы желудочков порции крови выбрасываются в аорту и легочные артерии под определенным давлением, что приводит к увеличению давления и растяжению эластических стенок сосудистого бассейна. Во время диастолы растянутые кровью артериальные сосуды сокращаются и проталкивают кровь к капиллярам, поддерживая тем самым, необходимое давление. Кровь течет из области высокого, в область низкого давления. При движении ей приходится преодолевать сопротивление, создаваемое, трением частиц крови друг о друга, т.е. внутреннее трение, а так же трением частиц крови о стенки сосудов, т.е. внешнее трение. По мере продвижения крови по сосудам от аорты к венам давление крови уменьшается. Особенно быстро снижается давление в артериолах и капиллярах, т.к. они обладают большим сопротивлением, имеют малый радиус, большую суммарную длину, многочисленные ветвления, создающие дополнительное препятствие кровотоку.

Основной закон гемодинамики. В соответствии с законами гидродинамики количество жидкости (крови), протекающей через поперечное сечение сосуда (Q), за единицу времени (мл/с) или объемная скорость кровотока (Q) прямо пропорциональна разности давления в начале (Р1) сосудистой системы, т.е. в аорте, и в ее конце (Р2), т.е. полых венах, и обратно пропорциональна сопротивлению(R) току крови.

где, Q – объемная скорость крови;

Р1 – давление в аорте;

Р2 – давление в полых венах;

Р12 – разность давлений, имеющаяся в начале и в конце сосудистой системы, обеспечивает продвижение крови и способствует непрерывному кровотоку. Учитывая, что давление в полых венах равно 0, имеем:

Р – давление в аорте. Следовательно, Р=QR.

В данном случае Q – это минимальный объем кровотока, который зависит только от насосной функции сердца и определяется по формуле:

Где СО – систолический объем;

ЧСС – частота сердечных сокращений.

Т.о. МОК – это количество крови, протекающее в единицу времени (1мин) через поперечное сечение какого-либо участка кровеносного русла. Подставляя его в формулу расчета давления, имеем

Р = СО х ЧСС х R

В связи с замкнутостью кровеносной системы объемная скорость кровотока во всех его отделах (всех артериях, всех капиллярах, всех венах) одинакова и составляет 4-6 л/ мин.

Теперь необходимо определить и выразить R.

R – сопротивление в кровеносном сосуде, его можно определить по формуле Пуазейля: R=8lη/πr 4 , где

где l – длина сосудов;

η – вязкость крови;

π – константа (число), показывающее отношение окружности к диаметру, всегда равна 3,14;

r – радиус сосуда.

Т.е. сопротивление зависит от длины сосудов, вязкости крови (которая в 5 раз больше вязкости воды), радиуса сосуда. Длина сосуда постоянна, радиус и вязкость – переменные величины. Вязкость крови определяется содержанием в крови форменных элементов, преимущественно эритроцитов и белков, т.е. гематокритом. При уменьшении количества эритроцитов (при анемии) вязкость крови низкая, сопротивление уменьшается. При увеличении количества эритроцитов (эритроцитоз) вязкость крови увеличиваются, сосудистое сопротивление становится выше. Однако, несмотря на то, что вязкость – это переменная величина, организм тем не менее, не имеет возможности изменять ее быстро. Т.е. с точки зрения быстроты регуляции давления вязкость так же можно считать константой. Убирая из формулы Пуазейля все константы, получаем

Эта формула показывает, что сопротивление току крови обратно пропорциональна радиусу. Например, чем больше радиус, тем меньше сопротивление.

Обратим внимание, что математическому (физическому) понятию радиуса в физиологии соответствует понятие тонуса сосуда. Эти величины обратно пропорциональны, например, если тонус сосуда увеличивается (гладкомышечные клетки стенок сосуда сокращаются), то его радиус уменьшается, а сопротивление току крови при этом возрастает.

Причем, зависимость R от радиуса (тонуса) сосуда сильная, в формуле радиус находится в четвертой степени. Значит, даже незначительное изменение радиуса сосудов будет сильно влиять на сопротивление току крови и, следовательно, на давление в сосуде.

Подставляя выражение R в формулу расчета артериального давления, имеем

Эту формулу можно считать базовой для гемодинамики, по крайней мере, для расчета значения давления в магистральных артериях. В клинике именно давление в крупных артериях называют артериальным давлением.

Полученная формула весьма информативна. Она в частности, показывает, какие возможности имеет организм, чтобы быстро изменить артериальное давление. Он может изменить три параметра: СО, ЧСС и r. При этом понятно, что наиболее выражено давление будет меняться при изменении тонуса сосудов (r в четвертой степени).

Кроме того, на основе формулы понятно, что артериальное давление в основном зависит от работы двух систем организма сердца и сосудов. При этом сердце, благодаря своей насосной функции, формирует некий общий уровень давления (МОК= СО х ЧСС), а для его регуляции в основном используется тонус сосудов (R

Можно так же утверждать, что систолическое давление в основном зависит от работы сердца и характеризует его насосную функцию. Тогда как диастолическое давление в основном определяется эластическими свойствами артерий и характеризует их тонус.

Линейная и объемная скорости кровотока.Общий объем крови в сосудистой системе является важным гомеостатическим показателем. Средняя величина составляет для женщин 6-7%, для мужчин 7-8% от массы тела и находится в пределах 4-6 л. Из этого объема 80-85% крови заполняет большой круг кровообращения, около 10% малый круг кровообращения, 7% находится в сердце.

Объемная скорость кровотока – объем крови, протекающей через поперечное сечение данного отдела сосуда в единицу времени. Измеряется в мл/сек.

Объемная скорость кровотока одинакова во всех отделах сосудистой системы. Очевидно, что если в конкретный момент времени левый желудочек выбрасывает в аорту 70 мл крови, то в то же время в правое предсердие будет притекать такое же количество крови (70 мл), равно кК через капилляры будет проталкиваться объем крови, равный 70 мл. Объемная скорость за минуту соответствует МОК.

Зная объемную скорость кровотока можно рассчитать его линейную скоростьили расстояние, на которое перемещается частица крови в единицу времени, или скорость движения крови в сосудах. Измеряется в м/с.

Линейная скорость, вычисленная по формуле V=Q/π r, где

V – линейная скорость кровотока ( м/с);

Q – объемная скорость(мл/с);

r – радиус поперечного сечения конкретного отдела кровеносной системы.

Если Q одинакова во всех участках кровеносной системы, то V сильно варьирует и зависит, как это следует из формулы, от суммарного радиуса всех сосудов данного участка кровеносной системы. Самым узким из них является аорта, радиус которой 2,5 см (25 мм), поэтому скорость кровотока здесь максимальна – 0,5 м/с. Наиболее широкий участок – капилляры большого круга кровообращения, суммарный радиус которых в среднем в 600 раз больше аорты (1500 мм или 15 м). Соответственно, здесь скорость кровотока падает в 600 раз и составляет 0,5-1,0 мм/с. Суммарный диаметр (радиус) обеих полых вен в 2 раза больше аорты, кровь течет в них со скоростью 25 см/с. Из формулы и приведенных цифр следует, что V связана с радиусов сосудов линейно и обратно пропорционально.

В центре сосуда линейная скорость максимальна, около стенок минимальна, т.к. велико трение частиц крови о стенку. Более того, непосредственно у стенок сосудов трение столь велико, что говорят о краевом стоянии форменных элементов, т.е. они движутся предельно медленно.

Давление в различных участках кровеносного русла.

Как и скорость кровотока, давление в сосудах обратно пропорционально их радиусу. Наиболее высоким оно оказывается в аорте и равно 140/90 мм рт. ст. 120 мм рт. ст. – систолическое давление, соответствует момента выброса СО из сердца. 90 мм рт. ст. – диастолическое давление, формируется благодаря эластическим волокнам аорты в моменты времени, когда сердце не выполняет свою насосную функцию.

Более широким участком кровеносной системы являются крупные магистральные артерии, соответственно, давление здесь чуть ниже, чем в аорте, и составляет 120/80 мм рт. ст. Еще совсем недавно такое АД, измеряемое на лучевой артерии, считалось в клинике нормальным. Однако в настоящее время, в связи с высоким общим стрессогенным фактором, характерным для современной цивилизации, гиподинамией, в которой существует большинство людей в развитом обществе, клинической нормой АД принимают 139/89 мм рт. ст.

Согласно выше определенной формуле расчета сосудистого давления – Р

Q/r 4 , оно (давление) должно линейно и обратно пропорционально зависеть от радиуса в любом участке кровеносного русла. Однако такая линейная зависимость характерна в основном только для артерий, в капиллярах и венах присутствует ряд сил, факторов, которые значимо влияют на давление, но не учитываются в данной формуле.

Радиус (диаметр) капиллярного русла в 600 раз больше аорты, следовательно, в гидродинамической системе давления в них будет снижаться в 600 раз. Тогда как гемодинамической системе давление в капиллярах падает всего в несколько раз и составляет и 10-25 мм рт. ст. Это происходит вследствие резкого увеличения сопротивления току крови в обменных сосудах. Дело в том, что диаметр отдельно взятого капилляра меньше диаметра эритроцита, который вынужден протискиваться через капилляр. При этом сила трения столь возрастает, что эритроцит, проходя через обменный сосуд, изменяет свою форму, становясь элипсовидным. Это с одной стороны, улучшает диффузию СО2 и О2, с другой – препятствует значительному падению давления в сосуде.

Диаметр полых вен в 2 раза больше аорты. Если бы стенки этих сосудов были жесткими, то давление в полых венах было бы в 2 раза ниже, чем в аорте. На самом деле давление в полых венах равно 0. Это происходит, потому что стенки полых вен, содержащие коллаген, хорошо растягиваются, не оказывая сопротивление току крови. Если R=0, то и Р=0 (Р=QR). Более того, в момент диастолы, когда сердце расслабляется, давление в полых венах становится даже отрицательным. Говорят о присасывающей функции сердца, которая облегчает возврат крови из большого круга кровообращения, уменьшая, тем самым, нагрузку на сердечную мышцу. Давление в венах меньшего диаметра, чем полые, чуть выше, чем в них, но меньше, чем в капиллярах – 5-15 мм рт. ст. Наконец отметим, что в капиллярах и венах нет пульсового давления (систолического, диастолического), т.к. нет пульсовой волны из – за отсутствия эластических волокон в стенках этих сосудов.

Дата добавления: 2014-12-26 ; просмотров: 16757 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Основное уравнение гемодинамики

1.6.1 Основное уравнение гемодинамики

Гемодинамика рассматривает давление и сопротивление во взаимосвязи с кровотоком (Q).[8] Кровоток равен объёму крови, проходящему через кровеносные сосуды за единицу времени. Для большого и малого круга кровообращения это и есть СВ или МОК. Согласно основному уравнению гемодинамики: Q=P/R. Между МОК и периферическим сопротивлением существует обратно пропорциональная и нелинейная взаимосвязь. Чем больше МОК, тем меньше должно быть периферическое сопротивление[2].

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно представить в виде трубочки, сопротивление в которой определяется по формуле Пуазейля: R=8*ℓ*η/πr^4,

Где ℓ-длина трубки ;η- вязкость крови; r- радиус сосуда, π- отношение длины окружности к его диаметру (≈3,14)

Подставляя эту формулу в основное уравнение гемодинамики, получим формулу Пуазейля-Хагена:

Из этого уравнения следует, что объёмная скорость кровотока прямо пропорциональна радиусу сосуда в четвёртой степени и обратно пропорциональна его длине и вязкости крови.

1.6.2 Сосудистое сопротивление и скорость кровотока

Существует понятие объёмной (Vоб) и линейной (Vлин) скорости кровотока. Vоб измеряется в мл/сек. Зная её можно рассчитать Vлин , которая выражается в см/сек. Vлин отражает скорость продвижения частиц крови вдоль сосуда и равна Vоб , делённой на площадь сечения кровеносного сосуда.

Vлин различна для частиц, продвигающихся в центре сосуда и у стенок. В центре сосуда она максимальна, около стенки — минимальна. Здесь особенно велико трение частиц крови о стенку. Vлин в последовательных участках сосудистой цепи не одинакова. В условиях покоя Vлин в аорте= 20 см/сек, в артериолах-1,5 см/сек, в капиллярах- 0,3 мм/сек. Площадь поперечного сечения верхней и нижней полой вены, взятая вместе в 2 раза больше площади сечения аорты. Vлин в полых венах- 5 см/сек.[8] Во время мышечной работы Vлин возрастает пропорционально мощности нагрузки.

Замедление скорости кровотока, считавшееся основным признаком развития сердечной недостаточности, встречается также у высокотренированных спортсменов и зависит от расширения кровеносного русла.[4]

1.6.3 Регуляция сосудистого сопротивления

Организм имеет мощную систему рецепторов и регуляторный аппарат, которые заботятся о точном соответствии между МОК и R. От этого зависит нормальный уровень АД.[2]

Уже в самом начале физической работы, в период разминки усиливается деятельность всех звеньев кислородтранспортной системы, в том числе расширяются капиллярные сети в лёгких, сердце, скелетных мышцах. Это приводит к усилению снабжения тканей кислородом. В результате разминки снижается вязкость крови. Во время мышечной работы кровоток в активных мышцах может в 20-30 раз превысить кровоток покоя. Регуляция мышечного кровообращения осуществляется благодаря двум способам регуляции просвета мышечных сосудов- внешнему (нейрогуморальному) и внутреннему (ауторегуляторного).[8] Сосуды находятся в тонусе, благодаря наличию в мышцах стенок автоматии. Кроме того сосудодвигательный центр, обеспечивающий сужение артерий находится в продолговатом мозге и состоит из двух отделов: прессорного и депрессорного. Раздражение прессорного отдела вызывает сужение артерий и подъём АД, а депрессорного- расширение артерий и падение АД. Сужение сосудов происходит также благодаря хеморецепторам, которые реагируют на снижение О2 и повышение СО2 в крови. Часть гармонов сужает артерии. К ним относятся: адреналин и норадреналин, вазопрессин, серотонин. К сосудорасширяющим веществам относятся простогландины, ацетилхолин и гистамин и др. Регуляция просвета сосудов обеспечивает не только необходимый уровень кровотока, но и регулирует сосудистое сопротивление, за счёт которого поддерживается перфузионное давление и объём сосудов приспосабливается к ОЦК.

И.М Сеченов назвал артериолы и преартериолы «кранами кровеносной системы».Их суммарная пропускная способность составляет периферическое сопротивление[2]. Избыточное их расширение приводит к гипотонии.

Самые маленькие разветвления лёгочной артерии имеют мышечный слой и способны выносить значительные изменения диаметра. Этот диаметр может быть сокращён втрое. А уменьшение диаметра втрое означает уменьшение поверхности поперечного сечения в 9 раз и повышение сопротивления приблизительно в 27 раз.[1] Изменение циркуляции в капиллярах является очень важным.

Общая поверхность капилляров мышечной системы взрослого человека огромна. Диаметр капилляров может меняться в 2-3 раза. Он колеблется в пределах от 5-6 мк, до20-30мк. При максимальном тонусе капилляры могут настолько сузиться, что не пропускают кровяных телец (может просачиваться только плазма). При резком расслаблении тонуса стенок в их расширенном просвете скопляется много крови.[1] Уменьшение капиллярного кровоснабжения мозга вызывает расстройства кровообращения и питания нервных центров.

Лекция №3. Основы гидродинамики и гемодинамики

Гидродинамика — раздел физики, в котором на основе законов механики изучают движение жидкостей.
Гемодинамика изучает движение крови в кровеносной системе. Рассмотрим некоторые принципы гидродинамики.

Описание потока жидкости

Для описания течения жидкости необходимо рассмотреть движение небольшого ее объема. Линии, вдоль которых перемещаются частицы жидкости, называются линиями тока. Если каждая последующая частица жидкости проходит через данную точку, следуя по тому же пути, что и предыдущая частица жидкости, течение жидкости называется стационарным. Линии тока при стационарном течении жидкости отображают направление течения, которое может быть прямым или изогнутым. Касательная, проведенная в любой точке к линиям тока, указывает направление вектора скорости в данной точке.

Уравнение неразрывности

Рассмотрим движение несжимаемой жидкости через трубку переменного сечения. Если некоторый объем жидкости поступает в один конец трубки, то равный ему объем должен выйти через другой конец трубки.

Основным показателем течения жидкости в трубке является Q – объемная скорость течения жидкости — объем жидкости (V), перемещающейся за единицу времени через поперечное сечение трубки. Если объемная скорость жидкости, которая поступает через один конец трубки, составляет Q1, то объемная скорость жидкости, вытекающей из другого конца трубки, будет Q2, и она будет равна Q1. Этот принцип называется уравнением неразрывности. Таким образом, уравнение неразрывности можно записать: Q1 = Q2 (1).

Объемная скорость жидкости равна произведению линейной скорости жидкости ν(м/с) на площадь поперечного сечения трубки S: Q = v*S (2)

Для трубки с переменным поперечным сечением (S1, S2 и т.д.) имеем другую форму уравнения неразрывности: v1S1 = v2S2 = . = vnSn (3).

Таким образом, произведение линейной скорости движения жидкости на площадь поперечного сечения одинаково во всех сечениях. Отсюда, если уменьшается S, то v при этом увеличивается, и наоборот.

Обычно линейная скорость течения не одинакова в каждой точке поперечного сечения. Уравнение неразрывности отражает среднюю скорость течения.

Вязкость

Вязкость — свойство жидкостей, обусловленное движением частиц жидкости относительно друг друга, что обуславливает возникновение сопротивления течению жидкости в целом. Вязкость возникает из-за внутреннего трения между молекулами жидкости. Такое трение обуславливает возникновение различия скоростей движения частиц в потоке жидкости.

Обратной величиной вязкости является текучесть. Различные жидкости отличаются по вязкости. Например, вязкость нефти больше, чем вязкость воды.

Вязкость является основным показателем в определении сил, которые преодолевают жидкости при перемещении в трубках и сосудах. Вязкость крови существенно влияет на ток крови в сердечно-сосудистой системе.

Рис. 1. Профиль векторов скоростей при ламинарном течении жидкости между двумя листами металла

Понятие вязкости было предложено Ньютоном. Представим простой эксперимент, показанный на Рис. 1. Между двумя плоскими металлическими пластинами поместили тонкий слой жидкости. Нижняя пластина установлена неподвижно, а верхняя пластина под действием определенной силы перемещается с постоянной скоростью. Эта сила необходима для преодоления вязких свойств жидкости. Она должна иметь большие значения для более вязкой жидкости, чем для менее вязкой жидкости.

Если верхняя пластина перемещается, жидкость приходит в так называемое ламинарное движение. Каждый слой жидкости движется с некоторой скоростью ν. Каждый слой оказывает силовое действие на нижние пластины и испытывает действие равной силы в обратном направлении. В результате, скорости разных слоев жидкости оказываются не одинаковыми. Профиль векторов скоростей разных слоев жидкости показан на Рис. 1. Так формируется градиент скорости dν/dx.

Ньютон доказал, что сила внутреннего трения F пропорциональна площади соприкасающихся слоев жидкости S и градиенту скорости dν/dx:

Константа прямой пропорциональности (η- ″эта″), называется абсолютной вязкостью жидкости (или динамической вязкостью). Она равна силе внутреннего трения, возникающей между двумя слоями общей площадью, равной единице, при градиенте скорости между ними, равном 1. Единицей измерения вязкости является [Н·с/м2]или [Па·с]. Величина вязкости зависит от природы жидкости и ее температуры. Вязкость жидкостей уменьшается с увеличением температуре и наоборот.

В некоторых случаях удобней применять относительную вязкость, а не абсолютную. Относительная вязкость жидкости — это абсолютная вязкость этой жидкости, деленная на вязкость воды.

Ньютоновские и неньютоновские жидкости

Жидкости, вязкость которых может быть описана уравнением Ньютона, называются ньютоновскими. Это гомогенные жидкости (вода, духи, растворы электролитов и т.п.) Существуют также более сложные разнородные жидкости, для описания которых уравнение Ньютона неадекватно. Вязкость таких жидкостей, которые называются неньютоновскими жидкостями, зависит от скорости течения (при высоких их значениях). Эта категория жидкостей включает суспензии, эмульсии и растворы макромолекул (например, белков). Длинные цепочки макромолекул в растворах могут запутываться друг с другом, и это переплетение препятствует их способности реагировать на изменения скорости течения растворителя. Величина вязкости неньютоновских жидкостей большая, чем у ньютоновских жидкостей.

Ламинарное и турбулентное течение

Течение жидкости, показанное на Рис. 1, называется ламинарным. Слой жидкости, контактирующий с подвижной металлической пластиной, имеет ту же скорость, что и эта пластина. Слой жидкости, расположенный ниже, перемещается немного медленнее, и скорость каждого последующего слоя немного меньше, чем предыдущего. При этом каждый слой жидкости скользит по другому, и разные слои не перемешиваются.

В ламинарном потоке каждая частица жидкости следует по пути своей предыдущей частицы. Скорость течения в любой точке жидкости остается постоянной. Линии тока не пересекаются между собой. Энергия, сообщаемая жидкости для поддержания ее течения, используется, главным образом, на преодоление вязких сил между слоями жидкости.

Другой тип течения называется турбулентным. Турбулентное течение неустойчиво. Послойный характер течения жидкости нарушается. В потоке образуются местные завихрения, частицы перемещаются не только параллельно, но и перпендикулярно оси трубки, непрерывно перемешиваясь. Линии тока становятся искривленными. Скорость частиц, пересекающих конкретную точку жидкости, не является постоянной по направлению и величине: она изменяется со временем. Описание турбулентного потока должно быть статистическим: с точки зрения средних величин. Для турбулентного течения необходима большая энергия, чем для ламинарного, поскольку при турбулентном течении существенно возрастает внутреннее трение между частицами жидкости.

Английский физик Рейнольдс исследовал условия, при которых течение является ламинарным или турбулентным. Переход из ламинарного течения в турбулентное зависит от значения безразмерной величины, называемой числом Рейнольдса. Число Рейнольдса для жидкости, текущей в цилиндрической трубке определяется уравнением: Re = vDρ/η (5),

где v — средняя скорость потока, D — диаметр трубки, η — вязкость, и ρ — плотность жидкости.
Критическая величина числа Рейнольдса для цилиндрических трубок, при котором ламинарное течение становится турбулентным — 2000 — 2400.

Критическая скорость — скорость жидкости, при превышении которой ламинарное течение переходит в турбулентное. Течение крови в сосудах является ламинарным (за исключением аорты). В аорте наблюдается турбулентное течение крови во время физической работы, которая приводит к существенному увеличению скорости течения крои. Поток крови также может стать турбулентным в артериях при уменьшении площади их поперечного сечения вследствие патологических процессов. Причиной этого феномена является повышение скорости течения крови.

Закон Пуазейля

Закон Пуазейля представляет собой формулу для объемной скорости течения жидкости. Он был открыт экспериментально французским физиологом Пуазейлем, который исследовал течение крови в кровеносных сосудах. Закон Пуазейля часто называют главным законом гидродинамики.

Закон Пуазейля связывает объемную скорость течения жидкости с разностью давления в начале и конце трубки как движущей силой потока, вязкостью жидкости, радиусом и длиной трубки. Закон Пуазейля используют в случае, если течение жидкости ламинарное. Формула закона Пуазейля:

где Q — объемная скорость жидкости (м 3 /с), (P1 — P2) — различие давления через концы трубки (Па), r — внутренний радиус трубки (м), l — длина трубки (м), η — вязкость жидкости (Па с).

Закон Пуазейля показывает, что величина Q пропорциональна разнице давления P1 — P2 в начале и конце трубки. Если P1 равняется P2, поток жидкости прекращается. Формула закона Пуазейля также показывает, что высокая вязкость жидкости приводит к снижению объемной скорости течения жидкости. Оно также показывает, что объемная скорость жидкости чрезвычайно зависима от радиуса трубки. Это подразумевает, что умеренные изменения радиуса кровеносных сосудов могут обеспечивать большие различия объемной скорости жидкости, протекающей через сосуд.

Формула закона Пуазейля упрощается и становится более универсальной при введении вспомогательной величины — гидродинамического сопротивления R, которое для цилиндрической трубки может быть определено по формуле:

Закон Пуазейля, таким образом, показывает, что объемная скорость жидкости прямо пропорциональна разнице давления в начале и конце трубки и обратно пропорциональна гидродинамическому сопротивлению:

Вязкость крови

Кровь является взвесью клеток крови в жидкости сложного состава, называемой плазмой. Различают красные клетки крови (эритроциты), белые клетки крови (лейкоциты) и тромбоциты. Плазма — водный раствор электролитов, белков, питательных веществ, продуктов метаболизма и т.п. Объем крови в организме составляет почти 7% объема человеческого тела. Эритроциты занимают около 45 % объема крови, а другие клетки крови — менее чем 1%. Относительный объем клеток крови и плазмы определяют с помощью прибора гематокрита. Это же название используют для определения результатов анализа.

Кровь является более плотной и вязкой, чем вода. В среднем относительная вязкость крови составляет почти 4,5 (3,5-5,4). Относительная вязкость плазмы — 2,2 (1,9 — 2,6). Вязкость крови измеряется в лаборатории с помощью специального прибора — медицинского вискозиметра. Кровь является неньютоновской жидкостью. Но при такой скорости течения, которая поддерживается в сосудах кровеносной системы, вязкие свойства крови можно рассматривать, как для ньютоновских жидкостей.

Вязкость крови зависит, главным образом, от концентрации эритроцитов и меньше — от концентрации белков плазмы. Она зависит также от скорости течения крови. Если скорость течения крови уменьшается, эритроциты собираются в специфические скопления, так называемые ″монетные столбики. Это приводит к повышению вязкости крови. Такой феномен может наблюдаться в мелких кровеносных сосудах, где скорость течения крови небольшая.

Однако существует физиологический механизм, который способствует уменьшению вязкости крови в небольших сосудах, называемый эффектом Фареуса-Линдквиста. Этот эффект объясняется ориентацией эритроцитов вдоль оси сосуда. Эритроциты, формируя цилиндрический осевой ток, скользят по слою окружающей их плазмы крови.

Структура и некоторые биофизические свойства сердечно- сосудистой системы

Сердечно-сосудистая система состоит из сердца и разветвленной замкнутой системы кровеносных сосудов, которые перемещают кровь во все части тела и в сердце. Сосудистая система состоит из системной циркуляции и легочной циркуляции. Кровеносные сосуды включают артерии, капилляры и вены. По артериям кровь поступает в органы и ткани. Через вены перемещается обратный поток крови. Каждая большая артерия, начинающая с аорты, ветвится, формируя меньшие артерии, которые, в свою очередь, разветвляются дальше. Наименьшие артерии называются артериолами. Кровь, в конце концов, достигает капилляров, где происходит обмен веществ с окружающими тканями. Затем капилляры собираются в венулы и вены, которые собираются в полые вены, откуда кровь из тканей поступает в сердце.

Основные параметры циркуляции крови

В клинике наиболее часто исследуют давление и скорость течения крови.

Давление крови в артериях колеблется от максимального во время сокращения сердца (систолы) до минимального во время расслабления (диастолы). При каждом сердцебиении давление крови поднимается до систолического уровня, а между ударами падает до диастолического уровня. Поэтому артериальное давление определяют как максимальное/минимальное значение (систолическое/диастолическое). Обычно его измеряют в миллиметрах ртутного столба. Среднее значение артериального давления для здоровых взрослых людей в состоянии покоя составляет 120/60 мм.рт.ст.

Сфигмоманометр – наиболее часто используемый прибор для измерения давления крови. Сфигмоманометр состоит из надувной манжеты, в которую с помощью резиновой груши нагнетают воздух, увеличивая в ней давление. Эта система связана с манометром, по шкале которого определяют артериальное давление пациента. Манжету фиксируют на плече, фонендоскоп устанавливают в локтевом сгибе.

Давление в манжете увеличивают до тех пор, пока в артерии не прекратиться ток крови. Затем давление в манжете медленно уменьшают. Когда оно достигнет максимального (систолического) значения, артерия частично открывается. Поскольку сечение артерии в этот момент меньше, чем обычно, в ней создается высокая скорость течения крови, и это течение является турбулентным. Поэтому фонендоскопом можно услышать звуки — тоны Kороткова.

Если продолжать уменьшать давление в манжете, артерия в течение некоторого периода остается еще достаточно сжатой, по сравнению с нормальным состоянием. Следовательно, тоны Короткова слышны до тех пор, пока давление в манжете не достигнет минимального (диастолического) значения. В этот момент кровь начинает свободно проходить через артерию. В артерии восстанавливается ламинарное течение крови, и тоны Короткова исчезают. Таким образом, измеряют максимальное и минимальное давление крови.

Скорость течения крови измеряют, используя эффект эходоплерографии. Как давление крови, так и скорость ее течения являются важными диагностическими показателями.

Давление и скорость течения крови в разных отделах кровеносной системы

Самое высокое давление в кровеносной системе в сердце. По закону Пуазейля: P1 — P2 = QR. Допустим, что P1 – давление крови в аорте и P2 — давление крови в полой вене, которое составляет около нуля мм.рт.ст. Следовательно, давление крови в аорте определяется двумя переменными.

(1) Первая из них — объемная скорость жидкости (Q) в аорте, величина которой зависит от частоты, мощности сердечных сокращений и объема в кровеносной системе.
(2) Вторая – общее сопротивление (R) кровеносной системы.

Давление крови уменьшается с расстоянием от сердца из-за трения в кровеносных сосудах. Давление крови является мерой энергии, которую сообщает крови сердце. Эта энергия рассеивается при преодолении сопротивления кровеносных сосудов.

Гидродинамическое сопротивление разных частей кровеносной системы не одинаково. Сопротивление аорты и больших артерий составляет только около 19% общей величины сопротивления в системе. Самая большая доля сопротивления принадлежит артериолам (50%) и капиллярам (25%)). Таким образом, на сосуды, длина которых составляет не несколько миллиметров, приходится более половины общего сопротивления циркуляторного русла. Сопротивление вены составляет около 7% общей величины сопротивления в кровеносной системе.

Величина гидродинамического сопротивления определяет падение давления крови по ходу сосудистого русла (Рис. 2). Среднее давление крови немного снижается в артериях (по отношению к давлению в аорте), но резкое его падение наблюдается в артериолах и капиллярах. Сопротивление артериол является одним из основных факторов, определяющих величину артериального давления. Изменения давления крови в венах очень небольшие.

Рис. 2. Среднее давление крови в разных отделах кровеносной системы. 1. Аорта. 2. Артерии. 3. Артериолы. 4.Капилляры. 5. Вены.

Средние величины давления крови (мм.рт.ст.): 100 — в небольших артериях, 95 — при переходя из артерий в артериолы, 35-70 — при поступлении крови из артериол в капилляры, 20-35 – в больших венах, 10 и менее – в мелких венах.

Скорость течения крови также значительно различается в разных отделах кровеносной системы (Рис. 3). Средняя величина скорости течения крови определяется уравнением неразрывности: она обратно пропорциональна общей площади поперечного сечения параллельно соединенных сосудов. Например, площадь поперечного сечения аорты составляет около 3,5-4,5, тогда как суммарная площадь поперечного сечения капилляров — в 600 раз большая. Поэтому средняя скорость крови составляет 0,2 в аорте и только 0,0003 в капиллярах. Небольшая скорость течения крови в капиллярах имеет большое значение для обмена веществ между кровью и окружающими тканями.

Рис.3. Средняя скорость течения крови в разных отделах кровеносной системы.
1. Аорта. 2. Артерии. 3. Артериолы. 4. Капилляры. 5. Вены.


источники:

http://kazedu.com/referat/114103/10

http://www.all-fizika.com/article/index.php?id_article=1972