Основные уравнения классификации и свойства обратных связей

Классификация обратных связей в усилителях

Обратные связи бывают полезными, если мы их создаем сами, и паразитными (вредными), если они возникают в схемах помимо нашего желания.

По месту нахождения по отношению к усилителю ОС могут быть внутренними, если передача сигнала с выхода на вход происходит через внутренние элементы усилителя, и внешними, если они охватывают усилитель снаружи.

По воздействию на величину коэффициента усиления ОС бывают положительными, если увеличивают его, и отрицательными, если уменьшают.

Реализация полезных обратных связей может быть различной. Различают 4 вида обратных связей:

На рисунках изображены:
а) последовательная ОС по напряжению
б) параллельная ОС по напряжению
в) последовательная ОС по току
г) параллельная ОС по току

Для определения вида обратной связи (ОС) нужно «закоротить» нагрузки. Если при этом сигнал обратной связи обращается в нуль, то это ОС по напряжению, если сигнал ОС не обращается в нуль, то это ОС по току. При обратной связи по напряжению сигнал обратной связи, поступающий с выхода усилителя на вход, пропорционален выходному напряжению. При обратной связи по току сигнал обратной связи пропорционален выходному току. При последовательной обратной связи (со сложением напряжений) в качестве сигнала обратной связи используется напряжение, которое вычитается (для отрицательной обратной связи) из напряжения внешнего входного сигнала. При параллельной обратной связи (со сложением токов) в качестве сигнала обратной связи используется ток, который вычитается из тока внешнего входного сигнала.

Обратные связи в усилителях

Обратной связью называется эффект подачи части выходного напряжения усилителя на его вход. Разработка в 1927 году принципов обратной связи (ОС) позволило резко изменить важнейшие параметры усилителей , поэтому в настоящее время ОС является неотъемлемой частью любого высококачественного усилителя.

Рисунок 1.4 — Структура обратной связи

В общем виде структурная схема усилителя с обратной связью представлена на рис. 1.4. Напряжение с выхода усилителя, имеющего коэффициент усиления К, подается на вход звена обратной связи с коэффициентом передачи . Выходное напряжение звена обратной связи, равное:

подается на вход усилителя, где алгебраически суммируется со входным напряжением. В результате реальное напряжение на входе усилителя составляет величину:

Если принять коэффициенты К и чисто активными, можно записать:

Подставляя в данное выражение значение U1 и UОС можно получить:

Отсюда коэффициент усиления усилителя, охваченного обратной связью:

Выражение в знаменателе » 1 +/- К » называется глубиной обратной связи и показывает во сколько раз изменяется коэффициент усиления под влиянием ОС.
Знак «+» соответствует отрицательной обратной связи (ООС), которая уменьшает коэффициент усиления усилителя. Особенностью ООС является то, что при больших К значение К >> 1 и выражение для коэффициента усиления усилителя, охваченного отрицательной обратной связью принимает вид:

т.е. определяется только свойствами звена обратной связи. Это свойство обратной связи часто используется в многочисленных схемах аналоговой электроники.
Знак » – » указывает на наличие в усилителе положительной обратной связи (ПОС). Нетрудно увидеть, что при этом происходит увеличение коэффициента усиления. Однако ПОС может вызвать ряд явлений, существенно искажающих режим работы усилителя. Если , , откуда следует, что коэффициент усиления неограниченно возрастает и усилитель входит в режим самовозбуждения.
Все обратные связи можно подразделяются по способу съема сигнала обратной связи на выходе усилителя и по способу введения сигнала на входе. На рис. 1.5 показана последовательная обратная связь, когда сигнал напряжение обратной связи подается на вход последовательно со входным напряжением.


Рисунок 1.5 — Последовательная обратная связь


Если выход звена обратной связи подключается параллельно входу усилителя (рис. 1.6) , то обратная связь считается параллельной и выходной ток звена обратной связи алгебраически суммируется со входным током усилителя.

Рисунок 1.6 – Параллельная обратная связь

В зависимости от способа съема сигнала можно выделить обратную связь по напряжению (рис. 1.7), когда сигнал обратной связи Uос пропорционален напряжению на нагрузке усилителя. Если снимать сигнал с шунта, как показано на рис.1.8, то в усилителе реализуется обратная связь по току.
Если усилитель и звено обратной связи содержат только активные элементы, то считается, что обратная связь частотно-независимая. Наличие реактивных элементов в звене обратной связи делает коэффициент передачи усилителя комплексным и обратная связь становится частотно-зависимой, за счет чего может существенно измениться вид амплитудно-частотной фазо-частотной характеристики усилителя


Рисунок 1.7 — Усилитель с ООС по напряжению


Рисунок 1. 8 — Обратная связь по току

Обратная связь может охватывать весь усилитель, как показано на рис. 1.4, или один каскад. В последнем случае обратная связь называется местной. Иногда обратная связь является неотъемлемым свойством усилителя(например за счет паразитных связей) или отдельных усилительных элементов. В этом случае ОС называется внутренней.

Элементы схемы, создающие обратную связь, образуют цепь обратной связи. Коэффициент передачи цепи обратной связи обычно обозначается β. Цепь обратной связи совместно с частью схемы уси­лителя, которую она охватывает, образует петлю обратной связи, или контур обратной связи. В зависимости от числа петель обратной свя­зи в усилителе обратная связь может быть одно- или многоконтур­ной.

Если напряжение Uoc обратной связи пропорционально выходному напряжению усилителя, то обратная связь такого вида называется обратной связью по напряже­нию (рис. 2.1). При этом можно передавать все выходное напряжение на вход схемы или только часть его, используя делитель напряжения, подключаемый параллельно нагрузке. В этом случае сопротивления ре­зисторов делителя напряжения должны быть существенно выше сопротивления на­грузки для того, чтобы не уменьшать ток через нагрузку.

Для того, чтобы опреде­лить, какая обратная связь присутствует в усилительном каскаде, можно провести мыс­ленные эксперименты, зако­рачивая нагрузку (режим ко­роткого замыкания на выхо­де) или разрывая цепь нагруз­ки (режим холостого хода усилителя) и определяя, дей­ствует или нет обратная связь в данных случаях. В режиме короткого замыкания на выходе обратная связь по напряжению отсутствует, а в режиме холостого хода не действует обратная связь по току. Если же в обоих случаях сигнал обратной связи отличен от нуля, то такая обратная связь является комбинированной (смешанной).

Если выход цепи обратной связи подключается ко входу усили­теля последовательно с источником входного сигнала, то обратная связь такого типа называется последовательной (рис. 2.4). Если же выход цепи обратной связи и источник входного сигнала подключе­ны ко входу усилителя параллельно, то связь называют параллельной (рис. 2.5).

В случае, когда колебания источника сигнала и колебания, посту­пающие через цепь обратной связи, совпадают по фазе, обратная связь называется положительной, если же эти колебания находятся в противофазе — то отрицательной.

усилительных устройствах для улучшения их показателей при­меняется в основном отрицательная обратная связь. Положительная обратная связь находит применение только в специальных типах уси­лителей и в генераторах. Оценим влияние обратной связи на основные технические показа­тели усилителя: коэффициент усиления, искажения, входное и выход­ное сопротивления, стабильность выходного сигнала.

Рассмотрим влияние обратной связи на коэффициент усиления на примере последовательной обратной связи по напряжению (рис. 2.6).

Если усилитель охвачен отрицательной обратной связью, то модуль коэффициента усиления Коос равен:

При положительной обратной связи модуль коэффициента усиления Кпос:

Как следует из (2.6), отрицательная обратная связь уменьшает модуль коэффициента усиления в (1+ βК) раз при любой величине βК. Выражение (1+βК) в усилителях с отрицательной обратной свя­зью называют глубиной обратной связи.

Как видно из (2.7), при βК 1, то синусоидальные колебания на выхо­де генератора все время возрастают и, наконец, из-за ограничения выходного напряжения генератор переходит в режим фор­мирования прямоугольных колебаний. В таком режиме работы гене­ратор иногда называют автоколебательным мультивибратором.

Если коэффициент усиления усилителя стре­мится к бесконечности (К→∞ ), то коэффициент усиления усилителя с обратной связью определяется не параметрами усилителя, а только элементами обратной связи:

Такой же результат получается, если в усилителе введена глубо­кая обратная связь, т. е. βК>>1.

Одновременно с уменьшением коэффициента усиления, с введени­ем отрицательной обратной связи повышается его стабильность от воздействия различных дестабилизирующих факторов. К дестабили­зирующим факторам относятся изменение температуры окружающей среды, старение и замена усилительных элементов и других компо­нентов схемы, изменение напряжения питания и т. п.

Таким образом, нестабильность коэффициента усиления усилителя с введением отрицательной обратной связи уменьшается в (1+βК) раз.

Как указывалось, величина частотных искажений в усилителе оце­нивается коэффициентом частотных искажений:

Аналогично для схемы, охваченной отрицательной обратной свя­зью, можно записать

где К0оос и К0 — модули коэффициента усиления в диапазоне средних частот усилителя, охваченного отрицательной обратной связью, и при разомкнутой цепи обратной связи соответственно; Коос и К— моду­ли коэффициента усиления на рассматриваемой частоте усилителя, охваченного отрицательной обратной связью, и при разомкнутой обратной связи; b0 и b — модуль коэффициента передачи цепи обрат­ной связи в диапазоне средних частот и на рассматриваемой частоте.

Учитывая, что обычно в диапазоне нижних и верхних частот ра­бочей полосы усилителя частотная характеристика понижается от­носительно диапазона средних частот, можно утверждать, что (1 +βК)/(1+β0К0)

Дата добавления: 2015-04-07 ; просмотров: 3955 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Классификация обратных связей в усилителях

Понятие «обратная связь» (ОС) широко используется как в технике, так и в других областях знаний. Обратной связью называют влияние некоторой выходной величины на некоторую входную, которая в свою очередь существенным образом влияет на выходную величину (определяет эту выходную величину). В усилителях, как правило, используется так называемая отрицательная обратная связь (ООС), которая и будет рассматриваться ниже. При наличии отрицательной обратной связи выходной сигнал таким образом влияет на входной, что входной сигнал уменьшается и соответственно приводит к уменьшению выходного сигнала.

Когда в 1928 г. была предпринята попытка запатентовать отрицательную обратную связь, то эксперты не увидели ее полезности и дали отрицательный ответ. И действительно, на первый взгляд, отрицательная обратная связь только уменьшает коэффициент усиления усилителя. Однако, как это часто бывает в технике вообще и в электронике в частности, один недостаток того или иного решения может значительно перевешиваться его достоинствами.

Отрицательная обратная связь, хотя и уменьшает коэффициент усиления, но исключительно благотворно влияет на многие параметры и характеристики усилителя. В частности, уменьшаются искажения сигнала, в значительно большем диапазоне частот коэффициент усиления оказывается не зависящим от частоты и т. д.

Различают следующих 4 вида обратных связей в усилителе (рис. 2.9):

  • последовательная по напряжению (а);
  • параллельная по напряжению (б);
  • последовательная по току (в);

  • параллельная по току (г).

На рис. 2.9 обозначено:

  • К — коэффициент прямой передачи, или коэффициент усиления усилителя без обратной связи;
  • β — коэффициент передачи цепи обратной связи.

Для определения вида обратной связи (ОС) нужно «закоротить» нагрузку. Если при этом сигнал обратной связи обращается в нуль, то это ОС по напряжению, если сигнал ОС не обращается в нуль — то это OC по току.

Обратная связь в усилителях.

Понятие «обратная связь» широко используется как в технике, так и в других областях знаний.
В усилителях под обратной связью (ОС) подразумевается такая электрическая связь, при которой часть энергии усиленного сигнала с выхода усилителя подается обратно на его вход.
Различают, по признаку усиления, положительную обратную связь (ПОС) и отрицательную обратную связь (ООС).
При положительной ОС сигнал на вход усилителя поступает в фазе со входным сигналом. При отрицательной ОС сигнал будет подаваться в противофазе с входным сигналом.
В усилителях используется, как правило, отрицательная обратная связь. а положительная — в генераторах и регенеративных радиоприемниках.
При наличии отрицательной обратной связи выходной сигнал таким образом влияет на входной так, что входной сигнал уменьшается и, соответственно, уменьшается выходной сигнал. И тут возникает вопрос: и зачем нужна такая обратная связь? Вот так и эксперты в 1928 году не увидели ее полезности и не запатентовали это изобретение.
И действительно, на первый взгляд, отрицательная обратная связь только уменьшает коэффициент усиления усилителя. Это так, но она исключительно благотворно влияет на многие параметры и характеристики усилителя.
В частности, уменьшаются искажения сигнала; в значительно большем диапазоне частот коэффициент усиления оказывается не зависящим от частоты и т.д. Но эти преимущества мы рассмотрим позже, а сейчас определимся с видами обратной связи и что происходит в усилителях при применении этих связей.

Виды обратной связи.

Усилитель с обратной связью можно рассматривать как два четырехполюсника (рис.1). Один из них — собственно усилитель, на вход которого подается напряжение Uвх. Второй четырехполюсник, состоящий из линейных элементов, образует цепь обратной связи.
Оба четырехполюсника могут соединяться по разному.
По способу подачи обратной связи различают ОС по напряжению и ОС по току.
В первом случае напряжение обратной связи пропорционально величине выходного напряжения усилителя, во втором случае — пропорционально току, протекающему через нагрузку усилителя.
На рис.1 показаны основные виды обратных связей, которые подразделяются на:
(а) последовательная по напряжению;
(б) параллельная по напряжению;
(в) последовательная по току;
(г) параллельная по току,
где К– коэффициент прямой передачи, или коэффициент усиления усилителя без обратной связи;
β– коэффициент передачи цепи обратной связи.

Если цепь обратной связи подключается к выходному напряжению усилителя на нагрузке Rн, а напряжение обратной связи Uос — последовательно в разрыв цепи входного напряжения Uвх, то такая обратная связь называется последовательной обратной связью по напряжению (рис.1а).
Если же цепь ОС подключена к выходу Uвых, а Uос включена параллельно напряжению на входе усилителя Uвх, то это будет параллельная обратная связь по напряжению (рис.1б).
При снятии токового сигнала для обратной связи на выходе усилителя с разрыва цепи нагрузочного сопротивления Rн и подключение этого сигнала последовательно с входным напряжением, получится последовательная обратная связь по току (рис.1в).
Параллельная обратная связь по току образуется при подачи токового сигнала с выхода усилителя на вход параллельно входному напряжению Uвх (рис.1г).
Короче говоря: обратная связь может подключаться на вход усилителя или последовательно, или параллельно, а сигнал сниматься с выхода либо токовый, либо напряжением.

Далее рассмотрим принципиальные и структурные схемы каскадов усилителей с различными способами присоединения цепи обратной связи.
На рис.2 показана последовательная схема обратной связи по напряжению. , когда вход цепи ОС подсоединен параллельно выходу каскада, а выход — последовательно ко входной цепи и образует последовательную ОС по напряжению. При подключении выходного напряжения усилителя к параллельно — последовательной цепи нагрузки, состоящей из сопротивления нагрузки Rн и резисторов Rос и Rт, напряжение обратной связи Uос подается последовательно в разрыв цепи входного напряжения сигнала Uc на внутреннею нагрузку Rвх.

На рис.3 вход цепи обратной связи подключен параллельно сопротивлению нагрузки Rн. В этой схеме напряжение на входе цепи ОС Uсв равно выходному напряжению Uн (нагрузке Rн) усилительного каскада. Таким образом создается параллельная обратная связь по напряжению.
Для всех ОС по напряжению характерно уменьшение их действия с уменьшением сопротивлений нагрузки, а при коротком замыкании выхода — полное прекращение.

Последовательная обратная связь по току (рис.4) образуется при последовательном соединения входа и выхода через цепь обратной связи. Для получения такой ОС, напряжение для ОС Uсв снимают с резистора Rт, включенного в цепь эмиттера. При изменении тока коллектора транзистора, которое вызывается переменным входным сигналом, создает на Rт переменное падение напряжения и, соответственно, разность между подводимом ко входу напряжением и переменным напряжением, действующим на резисторе.

На рис.5 показана параллельная обратная связь по току. Здесь переменное напряжение для обратной связи Uсв снимается с резистора Rт. Это напряжение, фаза которого противоположна фазе входного сигнала, параллельно подается на вход первого транзистора и управляет им.
Эти ОС по току прекращаются при разрыве входной или выходных цепях каскада, т.к. токи, создающие напряжения обратной связи, равны нулю.

Из перечисленных простых видов ОС могут создаваться усилители с многопетлевой ОС, состоящих из двух, трех и более каскадов усиления, в которых встречаются несколько петель обратной связи, охватывающая один каскад (местная петля ОС) и весь усилитель (общая петля ОС). Петли могут быть независимыми, а также частично или полностью входить одна в другую (рис.6). Поэтому необходимо учитывать действие общей ОС на местные ОС при расчете и выборе параметров последних.
В многокаскадных усилителях чаще всего общей петлей ОС охватывается не более двух каскадов, а в остальных каскадах, если требуется высокие электрические показатели, применяются местные петли.
При охвате петлей обратной связи нескольких каскадов усилителя могут возникнуть фазовые сдвиги из влияния реактивных элементов в каскадах (конденсаторы, катушки), что может привести к самовозбуждению усилителя.

Коэффициент усиления обратной связи.

Усилитель с обратной связью можно рассматривать как два четырехполюсника (рис.7).
Один из них — собственно усилитель, на вход которого подается напряжение Uвх. Этот усилитель при отключенной нагрузке Rн имеет коэффициент усиления К, т.е. на его выходе развивается э.д.с. KUвх. При включенной нагрузке напряжение на выходе усилителя Uн меньше э.д.с. KUвх на величину падения напряжения на выходном (внутреннем) сопротивлении усилителя Rвых от тока нагрузки Iн:
Uн = KUвх — IнRвых. (1)
Второй четырехполюсник, состоящий из линейных элементов, образует цепь обратной связи. Коэффициент передачи этой цепи равен β = Uос/Uсв, где Uос — напряжение, поступающее с выхода цепи обратной связи на вход усилителя.
Напряжение на входе собственно усилителя Uвх равно сумме напряжений источника сигнала Uс и обратной связи Uос:
Uвх = Uс + Uос = Uс + βUн.
Подставим это выражение в (1), получим:
Uн = К(Uс + βUн) — IнRн
или
Uн(1 — Кβ) = КUс — IнRн.
Выходное напряжение усилителя с ОС оказывается равным
Uн = [К/(1 — Кβ)]Uс — [Rн/(1 — Кβ)]Iн. (2)
Соотношение (1) и (2) выражают закон Ома для всей цепи: в левой части соотношений фигурирует выходное напряжение усилителя, а в правой — разность между действующей в выходной цепи э.д.с. и падением напряжения на выходном сопротивлении Rн усилителя.

Сопоставляя эти выражения, можно установить зависимости между коэффициентами усиления и выходными сопротивлениями усилителя с обратной связью (К’, R’вых) и без обратной связи (К, Rвых):
К’ = К/(1 — Кβ), (3)
R’вых = Rн/(1 — Кβ). (4)
Входное сопротивление усилителя Rвх, охваченного отрицательной обратной связью, зависит от способа подачи Uос. При использовании последовательной ОС входное сопротивлевление Rвх.о.с. возрастает в (1 +Кβ) раз:
Rвх.о.с. = Rвх (1 +Кβ) .
При параллельной схеме выходное сопротивление усилителя уменьшается, причем тем больше, чем больше коэффициент усиления К.
В формуле (3) коэффициент усиления К’, так же как и коэффициент К, определяется при отключенной нагрузке (Rн = ∞).
Теперь весь усилитель, включая цепь ОС, может быть представлен в виде одного четырехполюсника, на вход которого подается внешний сигнал Uс, а разность потенциалов на выходе создается источником э.д.с. К’Uс с выходным (внутренним) сопротивлением Rвых.
О характере и величине обратной связи судят по отношению К/К’, которое называют глубиной обратной связи :
χ = К/К’ = 1 — βК (5)
[см. выражение (3)].
Поскольку β и К зависят от частоты, то условились определять χ для средних частот , когда βК = ±βоКо. Тогда и показатель обратной связи — вещественное число.
Обратная связь называется положительной, если она вызывает рост коэффициента усиления (К’ > К) , и отрицательной, если она уменьшает этот коэффициент (К’ (χ = К/К’ перед ±βоКо знак минус:
χ = 1 — βК = 1 — βоКо,
а при отрицательной обратной связи (χ = К/К’ > 1) — знак плюс:
χ = 1 — βК = 1 + βоКо.
При положительной ОС напряжения Uос и входного сигнала Uс совпадают по фазе, поэтому
Uвх = Uс + Uос > Uс, К’ > Кo и χ = Ко/К’о
В случае отрицательной ОС напряжения Uос и Uс противофазны, и поэтому
Uвх = Uс + Uос 1.

Положительные свойства отрицательной обратной связи в усилителях.

Уменьшение нелинейных искажений.

Нелинейные искажения возникают в тех случаях, когда усилитель на дает на выходе увеличенную точную копию входного сигнала, а так или иначе изменяет его форму из-за нелинейности проходной характеристики. Нелинейные искажения — это амплитудные искажения, не зависящие от частоты сигнала. Они могут возникнуть тогда, когда коэффициент усиления падает при больших положительных или отрицательных отклонениях сигнала («приплюснутая» синусоида), так же с уменьшением коэффициента, когда сигнал становится очень малым по величине вблизи пересечения нуля («ступенька») и т.д.
Эти искажения можно рассматривать как внесение усилителем погрешности в выходной сигнал.

Основное достоинство отрицательной обратной связи в усилителях — уменьшение нелинейных искажений, возникающих главным образом в выходных каскадах. Поэтому ООС делается всегда именно в этом каскаде, но может охватывать также и предыдущий каскад.
Приводимый ниже расчет показывает, что отрицательная обратная связь уменьшает искажения во столько же раз, во сколько раз падает коэффициент усиления.
Рассмотрим усилитель на рис.8 с коэффициентом усиления К без ОС и искажающим сигналом D на выходе до включения обратной связи, т.е. без нее:
Uвых = КUвх + D,
где
Uвх = Uс — βUвых.
Поэтому
Uвых = К(Uс — βUвых) + D.
Выполняя преобразования, получим
Uвых(1 + βК) = КUс + D.
Следовательно,
Uвых = [К/(1 + βК)]Uс + D/(1 + βК)
или
Uвых = К’Uс + D’,
где К’ = К/(1 + βК) — коэффициент усиления с ОС,
D’ = D/(1 + βК) — величина искажающего сигнала на выходе при наличии отрицательной обратной связи.
Отсюда видно, что в случае, когда усилитель охвачен ООС, искажения D’ уменьшаются в (1 + βК) раз, но при этом входной сигнал Uс должен быть увеличен во столько же раз, чтобы поддержать основновной выходной сигнал на прежнем уровне.

Для большей наглядности рассмотрим числовой пример.
Пусть каскад имеет без обратной связи на средней частоте коэффициент усиления К = 40.
Переменный входной сигнал на входе усилителя равен 1 В, а на выходе — 40 В.
Напряжение обратной связи Uос = βUвых обычно составляет от 5 до 20% усиленного сигнала.
Предположим, что 10% усиленного сигнала, т.е. 4 В, подводится обратно на вход усилителя. Чтобы получить прежнее Uвых = 40 В, надо на вход подать Uвх = 1 + 4 = 5 В, т.к. тогда на входе напряжение сигнала снова будет:
Uс = Uвх — Uос = 5 — 4 = 1В.
Усиление каскада при ОС стало равно:
К = Uвых/Uвх = 40/5 =8,
т.е. уменьшилось в пять раз. Для поддержки Uвых на прежнем уровне нужно увеличить коэффициент усиления в пять раз.
Использование второго усилителя для увеличения входного сигнала не внесет существенного вклада в общий уровень искажений, т.к. будут усиливаться только малые сигналы. Дополнительное усиление — небольшая плата за малые искажения, так что это стоящий обмен.

Числовой пример по этой теме мы уже привели. До полной ясности приведем еще графический пример с нелинейными искажениями, источниками которых являются нелинейности вольт-амперных характеристик (ВАХ) транзисторов. Поэтому в усилителе положительные и отрицательные полуволны выходного сигнала могут быть разными.
Для уменьшения таких искажений применяется ООС.
На рис.9а показаны графики синусоидального входного и искаженного выходного напряжения в транзисторном усилителе (рис.8), не имеющие ОС (масштабы Uвх и Uвых разные). В данном случае нелинейные искажения таковы, что положительная полуволна выходного сигнала имеет бОльшую амплитуду, чем отрицательная.
Графики работы этого же усилителя с отрицательной обратной связью даны на рис.9б.
На входе Uс по прежнему синусоидальное. Его пришлось увеличить. Напряжение Uос = -βUвых противоположное по фазе Uвх, имеет первую полуволну с большей амплитудой, а вторую — с меньшей, т.к. оно является частью выходного напряжения.
Напряжение на входе усилителя Uвх равно разности напряжений источника сигнала Uс (предыдущего каскада или генератора) и Uос и показано жирной линией. Оно имеет положительную полуволну с меньшей амплитудой, а отрицательную — с большей. Так как меньшая положительная полуволна из-за нелинейности характеристики усилителя усиливается больше, то на выходе получается сигнал, близкий к синусоидальному.

Улучшение частотных характеристик.

Никакой усилитель не дает один и тот же коэффициент усиления на всех частотах и начинает падать на высоких частотах, главным образом из-за внутренней паразитной емкости усилителя. Этот недостаток иногда называют частотными искажениями, но их не следует путать с нелинейными искажениями.
Отрицательная обратная связь может скорректировать плохую частотную характеристику в пределах интервала частот и позволяет получить более равномерную амплитудно-частотную характеристику усилителя. В этом просто легко убедиться простым образом.
Допустим, что коэффициент частотных искажений Мв = Кср/Кв > 1 , т.е. усиление на высоких частотах Кв меньше, чем на средних Кср.
При отрицательной ОС
Мв.ос = Кср.ос/Кв.ос,
где Кср.ос и Кв.ос — коэффициенты усиления соответственно на средних и высоких частотах при введении в усилитель ОС.
Но
Кср.ос = Кср/(1 + βКср),
Кв.ос = Кв/(1 + βКв),
следовательно,
Мв.ос = [Кср/(1 + βКср)] / [Кв/(1 + βКв)] = (Кср/Кв)·[(1 + βКв) / (1 + βКср)],
или
Мв.ос = Мв·[(1 + βКв) / (1 + βКср)]. (6)
Так как
Кв
то отношение
(1 + βКв) / (1 + βКср)
Таким образом, Мв.ос
Предполагая, что обратная связь весьма глубокая (βК >> 1), и пренебрегая единицей по сравнению с βКв и βКср в выражении (6) получаем Мв.ос ≈ 1, т.е. βКв и βКср примерно равные и частотные искажения в усилителе с глубокой отрицательной обратной связью уменьшаются.
Это сглаживание амплитудно — частотной характеристики (АЧХ) объясняется так. Уровень напряжения, подаваемого с выхода на вход усилителя, в соответствии с АЧХ усилителя разный на разных частотах и, поэтому, различно действие обратной связи.
В области частот, где имеется подъем, обратная связь больше ослабляет усиление, чем на частотах, где имеется завал АЧХ. Таким образом, неравномерность характеристики сглаживается (рис.10).
Все это лишь в случае, если β не зависит от частоты. Применяя в цепи обратной связи реактивные элементы, т.е. делая коэффициент β частотно зависимым, можно получить АЧХ любой формы в зависимости от схемы. Этим пользуются для коррекции частотных искажений, возникающих в каскадах усиления, не охваченных обратной связью.

Для наглядности работы обратной связи на разных частотах рассмотрим числовой пример с каскадом усилителя, как делали это выше.
Там каскад имеет без ОС на средней частоте коэффициент усиления К = 40. Переменное напряжение на входе усилителя равно 1 В, а на выходе — 40 В.
Допустим, что этот усилитель без обратной связи на низшей или высшей частоте имеет коэффициент усиления 30, т.е. дает уменьшение усиления на 25%. Это значит, что при подаче на вход усилителя 1 В на выходе будет 30 В.
Предположим, что коэффициент обратной связи равен 0,1 (10% выходного напряжения) и равен 3 В, а напряжение на входе для получения U = 30 в должно быть Uвх = 1 + 3 = 4 В.
Следовательно, коэффициент усиления при обратной связи равен 30/4 = 7,5, а для средней частоты от был 8. Как видно, «заваливание» усиления получается немного больше 6%, т.е. оно уменьшилось в четыре раза.

Расширение полосы пропускания.

Использование отрицательной обратной связи приводит к уменьшению нижней граничной частоты fн и увеличение верхней граничной частоты fв, т.е. расширению полосы пропускания усилителя (рис.11).
Новые граничные частоты f’н и f’в зависят, как и коэффициент усиления, от выражения (1 + βК) :
f’н = fн/(1 + βК),
f’в = fв(1 + βК),
а новый коэффициент К’ равен
К’ = К/(1 + βК).
Если усилитель имеет К = 40 и fв = 8 кГц, то после применения ООС с β = 0,05 получаем новый коэффициент усиления
К’ = 40/(1 + 40·0,05) = 13,3
и граничную частоту
f’в = 8·(1 + 40·0,05) = 24 кГц.
Из этих расчетов видно, что увеличение широты пропускания привело к уменьшению коэффициента усиления в три раза.
Отсюда можно сделать общий вывод: произведение коэффициента на ширину пропускания К·∆f является постоянной величиной.

Устойчивость схем с отрицательной обратной связью.

В принципе усилители с ООС устойчивы, но тогда, когда хорошо сконструированы и грамотно изготовлены.
В результате фазовых сдвигов в некоторых диапазонах частот, обычно на краях усиливаемой полосы, связь из отрицательной может стать положительной и усиление может возрасти до бесконечности, что приведет к превращению усилителя в генератор, генерирующий собственные колебания. О таком усилителе говорят, что он нестабильный.
Вероятность нестабильности увеличивается с количеством обратной связи с большим усилением и глубокой связью, охватывающих несколько каскадов.Поэтому при конструировании усилителей ограничивают число каскадов, охваченных ОС, до трех
Так же дополнительно уменьшают коэффициент усиления на границах полосы пропускания на тех частотах, на которых в в результате фазового сдвига отрицательная обратная связь превращается в положительную.

Преимущества и недостатки отрицательной обратной связи.

ООС позволяет улучшить следующие свойства усилителя:
а) уменьшение чувствительности усиления к изменению параметров элементов схемы, режимов питания и внешних факторов;
б) уменьшение нелинейных искажений;
в) возможность формирования частотных характеристик;
г) возможность изменения входного и выходного сопротивлений.
К недостаткам ООС относится уменьшение коэффициента усиления и возможность нестабильности схемы.

Литература:
1.Белоцерковский Г.Б. — Основы радиотехники.
2.Гершунский — Основы электроники.
3.Давыдов С.Л. — Радиотехника, 1963 г.
4.Серегин Б.А. — Обратная связь в усилителях, 1983 г.
5.Хабловски И. — Электроника в вопросах и ответах.


источники:

http://pue8.ru/silovaya-elektronika/857-klassifikatsiya-obratnykh-svyazej-v-usilitelyakh.html

http://radio-samodel.ru/OS%20usilitel.html