Основные уравнения трансформатора векторная диаграмма

Основные уравнения трансформатора векторная диаграмма

Воропаев Е.Г.
Электротехника

гл.4 Трансформаторы
глава 1| глава 2| глава 3| глава 5| глава 6| глава 7| глава 8| глава 9| глава 10| глава 11|

4.1.ОСНОВНЫЕ ПОНЯТИЯ

Oпределение: Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.

Известно, что передача электроэнергии на дальние расстояния осуществляется на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно уменьшаются потери энергии в линии (рис. 4.1.1).
Получить такое высокое напряжение непосредственно в генераторе невозможно, поэтому в начале линии электропередачи устанавливают повышающие трансформаторы, а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и специальные.
Силовые трансформаторы используются в линиях электропередачи и распределения электроэнергии.
К специальным трансформаторам относятся: печные, выпрямительные, сварочные, автотрансформаторы, измерительные, трансформаторы для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные , из которых наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют по две обмотки) или многообмоточными (если они имеют более двух обмоток). В зависимости от способа охлаждения трансформаторы разделяются на масляные и сухие .

4.2. ПРИНЦИП ДЕЙСТВИЯ И КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ

Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток — первичная , подключена к источнику переменного тока. К другой обмотке — вторичной подключают потребитель.

Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в магнитопроводе переменный магнито-поток Ф. Замыкаясь в магнитопроводе, этот поток пронизывает обе обмотки, индуктируя в них ЭДС:

Из этих формул следует, что вычисленные ЭДС е1 и е2 могут отличаться друг от друга числами витков в обмотках. Применяя обмотки с различным соотношением витков, можно изготовить трансформатор на любое отношение напряжений.
При подключении ко вторичной обмотке нагрузки zн в цепи потечет ток I2 и на выводах вторичной обмотки установится напряжение U2.
Обмотка трансформатора, подключенная к сети c более высоким напряжением, называется обмоткой высшего напряжения (ВН); обмотка, присоединенная к сети меньшего напряжения, называется обмоткой низшего напряжения (НН).
Трансформаторы — обратимые аппараты, т.е. могут работать как повышающими, так и понижающими.
Основными частями трансформатора являются его магнитопровод и обмотки. Магнитопровод выполняется из тонких листов электротехнической стали. Перед cборкой листы изолируются друг от друга лаком или окалиной. Это дает возможность в значительной мере ослабить в нем вихревые токи и уменьшить потери на перемагничивание.
Трансформаторы бывают стержневыми и броневыми . Наиболее широкое распространение получили стержневые трансформаторы.
Трансформаторы броневого типа имеют разветвленный магнитопровод с одним стержнем и ярмами, частично прикрывающими (бронирующими) обмотки.
В трехфазном трансформаторе применяют трехстержневой магнитопровод, который похож на броневой, но обмотки на нем расположены на всех трех стержнях.

По способу сочленения стержней с ярмами различают шихтованные магнитопроводы и стыковые. В работе удобнее шихтованные магнитопроводы, т.к. воздушный зазор в местах сочленения у них меньше и они прочнее.
Форма поперечного сечения стержней зависит от мощности трансформатора: в небольших — это прямоугольник, а в средних и крупных — ступенчатое сечение.

Обмотки трансформаторов выполняют из медных проводов круглого и прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой.
По взаимному расположению обмоток ВН и НН и по способу их размещения на стержнях различают обмотки концентрические и дисковые.

В масляных трансформаторах магнитопровод с обмотками помещается в бак, заполненный маслом, которое отбирает от них тепло, передавая его стенкам бака. Кроме того, электрическая прочность масла выше, чем у воздуха, что обеспечивает более надежную работу высоковольтных трансформаторов.
Для увеличения охлаждающей поверхности применяются трубчатые баки.
При нагревании масло расширяется. Излишек его попадает из общего бака в бак-расширитель, установленный на крышке трансформатора.
Для предотвращения аварии у трансформаторов напряжением 1000 кВ и выше на расширителе устраивают выхлопную трубу, закрытую мембраной — стеклянной пластиной. При образовании в баке большого количества газов мембрана выдавливается, и газы выходят наружу.

4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ.
УРАВНЕНИЕ ЭДС

Как видно из рис. 4.2.1, основной магнитный поток Ф, действующий в магнито-проводе трансформатора, сцепляется с витками обмоток и наводит в них ЭДС:

Предположим, что магнитный поток Ф является синусоидальной функцией, т.е.

Подставим это значение в выражения для ЭДС и, произведя дифференцирование, получим:

где

Из последних формул видно, что ЭДС е1 и е2 отстают по фазе от потока Ф на угол p /2.

Максимальное значение ЭДС:

Переходя к действующим значениям, имеем

Если Фmах выражено в максвеллах, а Е в вольтах, то

Отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения называется коэффициентом трансформации.

Подставив вместо ЭДС Е1 и Е2 их значения, получим:

Токи I1 и I2, протекающие по обмоткам трансформатора, помимо основного потока Ф создают магнитные потоки рассеяния ФР1 и ФР2 (рис. 4.2.1). Каждый из этих потоков сцепляется только с витками собственной обмотки и индуктирует в них реактивные ЭДС рассеяния ЕР1 и ЕР2. Величины этих ЭДС прямо пропорциональны возбуждающим их токам:

где x1 и x2 — индуктивные сопротивления рассеяния обмоток.
Кроме этого, в каждой обмотке трансформатора имеет место активное падение напряжения, которое компенсируется своей ЭДС:

Рассмотрим действие изученных выше ЭДС в обмотках трансформатора.
В первичной обмотке Е1 представляет собой ЭДС самоиндукции, а поэтому она направлена против первичного напряжения u1. В связи с этим уравнение ЭДС для первичной обмотки имеет вид:

Величины j I1 x1 и I1 r1 представляют собой падение напряжений в первичной обмотке трансформатора. Обычно j I1 x1 и I1 r1 невелики, а поэтому, с некоторым приближением, можно считать, что подведенное к трансформатору напряжение u1 уравновешивается ЭДС Е1:

Во вторичной обмотке Е2 выполняет роль источника тока, поэтому уравнение ЭДС для вторичной обмотки имеет вид:

где j I2 x2 и I2 r2 — падение напряжения во вторичной обмотке.
При холостом ходе трансформатора первичная обмотка включена на напряжение u1, а вторичная разомкнута (I2 = 0).
При этих условиях в трансформаторе действует только одна намагничивающая сила первичной обмотки I10 w1, созданная током I10, которая наводит в магнитопроводе трансформатора основной магнитный поток:

где Rм — магнитное сопротивление магнитопровода потоку.
При подключении к вторичной обмотке нагрузки ZН в ней возникает ток I2. При этом ток в первичной обмотке увеличивается до значения I1.
Теперь поток Ф создается действием двух намагничивающих сил I1 w1 и I2 w2.

видно, что основной поток Ф0 не зависит от нагрузки трансформатора, при неизменом напряжении u1. Этот вывод дает право приравнять:

Разделим обе части уравнения на w1, получим:

где — вторичный ток, приведенный к числу витков первичной обмотки.
Перепишем уравнение

из которого следует, что ток I1 имеет две составляющие: одна из них (I10) затрачивается на создание основного потока в магнитопроводе, а другая (- I2‘) компенсирует размагничивающее действие вторичного тока.
Любое изменение тока во вторичной цепи трансформатора всегда сопровождается соответствующим изменением первичного тока. В итоге величина потока Ф (а, следовательно, и ЭДС Е1) остаются практически неизменными.
Вследствие перемагничивания стали в магнитопроводе трансформатора возникают потери энергии от гистерезиса и вихревых токов. Мощность этих потерь эквивалентна активной составляющей тока I10. Следовательно, ток I10 наряду с реактивной составляющей Iоp, идущей на создание основного потока Ф, имеет еще и активную составляющую Iоа. В итоге:

На рис. 4.4.1 приведена векторная диаграмма трансформатора в режиме холостого хода.
Обычно ток Iоа не превышает 10% от тока Io, поэтому незначительно влияет на величину I10. Обычно он равен (0,02 0,1) I1, поэтому при нагрузке I10 принимаем равным нулю, и тогда:

т. е. отношение токов обратно пропорционально числам витков обмоток.

Заключая разделы 4.3 и 4.4, перепишем вместе уравнения ЭДС и токов трансформатора:

Эти уравнения получили название основных уравнений, на которых базируется теория трансформатора и общая теория электрических машин переменного тока.

4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР

В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчеты и (особенно) построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, если привести все параметры трансформатора к одинаковому числу витков, например, к w1. С этой целью параметры вторичной обмотки пересчитываются на число витков w1.
Таким образом, вместо реального трансформатора с коэффициентом трансформации получают эквивалентный трансформатор с
Такой трансформатор называется приведенным. Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, т.е. все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе.
Так, например, если полная мощность вторичной обмотки реального трансформатора то она должна быть равна полной мощности вторичной обмотки приведенного трансформатора:

Используя ранее полученное выражение I 2 ‘ = I2 w2/w1, напишем выражение для E2 ‘ :

Приравняем теперь активные мощности вторичной обмотки:

Определим приведенное активное сопротивление:

Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:

4.6.ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА

Одним из методических приемов, облегчающих исследование электромагнитных процессов и расчет трансформаторов, является замена реального трансформатора с магнитными связями между обмотками эквивалентной электрической схемой (рис. 4.6.1).

На этом рисунке представлена эквивалентная схема приведенного трансформатора, на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены с ними последовательно. Т.к. k = 1, то E1 = E2. Поэтому точки А и а, а также Х и х на приведенном трансформаторе имеют одинаковые потенциалы, что позволит электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 4.6.2).

Произведя математическое описание этой схемы методами Кирхгофа, можно сделать вывод о том, что она полностью соответствует уравнениям ЭДС и токов реального трансформатора (см. раздел 4.5). Отсюда появляется возможность электрического моделирования трансформатора на ЭВМ. Проводя исследования относительно нагрузки z2 ‘ (единственного переменного параметра схемы), можно прогнозировать реальные ха-рактеристики трансформатора, начиная от холостого хода (z2 ‘ = ) и кончая коротким замыканием (z2 ‘ = 0).

4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ

Построение векторной диаграммы удобнее начинать с вектора основного потока Ф. Отложим его по оси абсцисс. Вектор I10 опережает его на угол a . Далее строим векторы ЭДС Е1 и Е2 ‘ , которые отстают от потока Ф на 90°. Для определения угла сдвига фаз между E2 ‘ и I2‘ следует знать характер нагрузки. Предположим, она — активно-индуктивная. Тогда I2‘ отстает от E2’ на угол f 2.
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.). Для того чтобы достроить ее, необходимо воспользоваться тремя основными уравнениями приведенного трансформатора.

Воспользуемся вторым основным уравнением:

и произведем сложение векторов.
Для этого к концу вектора E2 ‘ пристроим вектор — j I2‘ x2 ‘ , а к его концу — вектор — I2 ‘ r2 ‘ . Результирующим вектором U2 ‘ будет вектор, соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение

из которого видно, что вектор тока I1 состоит из геометрической суммы векторов I10 и — I2‘. Произведем это суммирование и достроим векторную диаграмму.
Теперь вернемся к первому основному уравнению:

Чтобы построить вектор — Е1 , нужно взять вектор +Е1 и направить его в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1 . Первый будет идти перпендикулярно току, а второй — параллельно ему. В результате получим суммарный вектор u1.
Построенная векторная диаграмма имеет общий характер. По этой же методике можно осуществить ее построение как для различных режимов, так и для разных характеров нагрузки.

4.8.ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

В работающем трансформаторе всегда имеются как магнитные, так и электрические потери. Магнитные потери слагаются из потерь на вихревые токи и гистерезис.

Величина этих потерь зависит от напряжения u1 и магнитной индукции В. Можно считать, что при U1 = const, рон= В 2 . Они не зависят от нагрузки, т.е. являются постоянными. Электрические потери в обмотках, наоборот, переменные, т.е.:

где ркн — соответствует потерям при коротком замыкании трансформатора.
Если известны потери короткого замыкания при номинальной нагрузке, то электрические потери можно определить по формуле:

где — коэффициент загрузки трансформатора.
Общие потери в трансформаторе:

КПД представляет собой отношение активной мощности Р2, отбираемой от трансформатора, к активной модности Р1, подводимой к трансформатору:

Мощность Р2 подсчитывается по формуле:

где — номинальная мощность, кВт.

Мощность

тогда КПД трансформатора

Как видно из последней формулы, величина К.П.Д. зависит от загрузки трансформатора. Кроме того, К.П.Д. тем больше, чем выше cos f 2. Максимальный КПД соответствует такой загрузке, при которой магнитные потери равны электрическим потерям:

Отсюда значение коэффициента загрузки, соответствующее максимальному К.П.Д., равно:

Обычно К.П.Д. имеет максимальное значение при b = 0,5 — 0,6. Тогда
h = 0,98 — 0,99.

4.9.ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

4.9.1. Общие положения

Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов, у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.
Трехфазные трансформаторы могут иметь различные схемы соединения первичных и вторичных обмоток. Все начала первичных обмоток трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с.
Концы обмоток обозначаются соответственно: X, У, Z и х, у, z.
Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.
Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» ( D ), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).
На рис. 4.9.1 приведен трехфазный трансформатор при включении обмоток Y/Y.

4.10.ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК

До сих пор мы считали, что при построении векторной диаграммы ЭДС Е1 и Е2 совпадают по фазе. Но это соответствует действительности лишь при условии намотки первичной и вторичной обмоток в одном направлении, или одноименной маркировки их выводов (рис. 4.10.1, а).

Если же в трансформаторе изменить направление намотки обмоток иди же переставить обозначение их выводов, то вектор ЭДС Е2 окажется сдвинутым относительно вектора Е1 на 180° (рис. 4.10.1, б).
Сдвиг фаз между ЭДС Е1 и Е2 принято выражать группой соединений. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига обычно составляет 30°, то для обозначения групп соединения выбирается ряд чисел от 1 до 12, в котором каждая единица соответствует углу сдвига 30°.
В основу этого положено сравнение относительного положения векторов Е1 и Е2 с положением минутной и часовой стрелок часов. Вектор обмотки В.Н. считается минутной стрелкой, установленной на цифре 12, а вектор Н.Н. — часовой стрелкой. По положению часовой стрелки относительно минутной определяют положение вектора ЭДС обмотки Н.Н. относительно обмотки В.Н. Так, на рис. 4.10.1, а соединение имеет группу 12, а на рис. 4.10.1, б — группу 6.
Таким образом, в однофазном трансформаторе имеется только две группы -12 и 6. В 3-х фазном трансформаторе группу соединения определяют по углу сдвига фаз между линейными векторами ЭДС Е1 и Е2 .
ГОСТ ограничивает применение только двух групп: Y / Y — 12 и Y / — 11. В качестве примера рассмотрим схему Y / Y — 12 (рис. 4.10.2).

Векторная диаграмма показывает, что сдвиг между E1 и Е2 равен нулю или 360°, т.е. (360° / 30° — 12 группа).
Если же поменять начала и концы обмоток Н.Н., то будем иметь группу 6 (рис. 4.10.3).

4.11. ПАРАЛЛЕЛЬНАЯ РАБОТА ТРАНСФОРМАТОРОВ

При выборе трансформаторов для электроснабжения производственного предприятия часто возникает дилемма: либо установить один мощный трансформатор, либо применить их несколько, в сумме обеспечивающих требуемую мощность.
Второй вариант будет всегда предпочтительней, т.к. режим работы предприятия в течение суток неравномерный и потребляемая мощность будет различной. Например, в ночное время нагрузка будет минимальной, т.к. потребляемая мощность складывается лишь из охранного освещения и нескольких дежурных объектов. Днем, когда работают основные потребители электроэнергии, потребляемая мощность будет максимальной. Какой-то промежуточный режим будет в вечернее время суток. Короче говоря, в работе могут находиться один, два или сразу три трансформатора.
Параллельная работа нескольких трансформаторов связана с тем, что их вторичные обмотки питают общую нагрузку.
Однако не все трансформаторы способны работать параллельно.
Определим условия, при которых возможно включение трансформаторов на параллельную работу. Во-первых, это одинаковые первичные и вторичные напряжения на обмотках. Во-вторых, должны быть одинаковые схемы и группы соединения. Помимо этого, регламентируются напряжения короткого замыкания, указанные в паспорте трансформатора. И, конечно, порядок чередования фаз у параллельно работающих трансформаторов должен быть одинаковым. В качестве примера приведем схему параллельно включенных пяти сварочных трансформаторов, обеспечивающих работу 14 сварочных постов (рис. 4.11.1).

4.12. ТРАНСФОРМАТОРЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

4.12.1. ТРЕХОБМОТОЧНЫЙ ТРАНСФОРМАТОР

В трех обмоточном трансформаторе имеются три электрически несвязанные друг с другом обмотки, из которых одна является первичной, а две другие — вторичными (рис. 4.12.1).

Первичная обмотка трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который пронизывает две вторичные обмотки и наводит в них ЭДС Е2 и Е3.
Пренебрегая током холостого хода, можно записать уравнение токов трех обмоточного трансформатора

т.е. первичный ток равен геометрической сумме приведенных вторичных токов. Целесообразность применения трехобмоточных трансформаторов объясняется еще и тем, что один трехобмоточный трансформатор фактически заменяет два двухобмоточных.
За номинальную мощность принимается мощность первичной обмотки. По такому же принципу устроены многообмоточные трансформаторы малой мощности, применяемые в радиоустройствах, связи и в автоматике.

4.12.2. АВТОТРАНСФОРМАТОР

В автотрансформаторе (рис. 4.12.2) часть витков в обмотке В.Н. используется в качестве обмотки Н.Н., т.е. в автотрансформаторе имеется всего лишь одна обмотка, часть которой (а Х) принадлежит одновременно сторонам В.Н. и Н.Н.

На участке аХ протекает ток i12 = i2 — i1, или переходя к действующим значениям, учитывая, что I1 и I2 находятся в противофазе, можно записат

Таким образом, величина тока в общей части обмоток равна разности токов I1 и I2.
Если коэффициент трансформации близок к единице, то I1 и I2 мало отличаются друг от друга, разность между ними будет также небольшой. Это позволит выполнять часть обмотки аХ проводом меньшего поперечного сечения.
Мощность, передаваемая первичной обмоткой во вторичную цепь автотрансформатора, будет равна:

Учитывая, что , ее можно записать в виде:

Здесь U2 I1 = SЭ , есть мощность, поступающая во вторичную цепь электрическим путем, U2 I12 = Sм — мощность, поступающая во вторичную цепь посредством магнитного потока.
Следовательно, в автотрансформаторе посредством магнитного потока передается только часть мощности, что дает возможность уменьшить поперечное сечение магнитопровода. Магнитные потери при этом также уменьшаются.
При меньшем поперечном сечении магнитопровода уменьшается средняя длина витка обмотки, следовательно, вновь уменьшается расход обмоточной меди и снижаются электрические потери.
Таким образом, автотрансформатор имеет преимущества перед трансформаторами, заключающиеся в меньшем весе, меньших размерах более высоком К.П.Д., меньшей стоимости и. т.д.
Однако эти достоинства имеют значение лишь при коэффициенте трансформации k d , можно плавно менять сварочный ток. Максимальное значение тока будет при d мах. Для безопасного обслуживания вторичная обмотка сварочного трансформатора заземляется.

4.12.4. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА И НАПРЯЖЕНИЯ

Эти трансформаторы применяются совместно с измерительными приборами для расширения их пределов измерения (рис. 4.12.4.1).
Измерительный трансформатор напряжения представляет собой понижающий трансформатор с таким отношением витков w1/w2, чтобы при U1 = Uсети; U2 = 100 В.
Во вторичную цепь включаются вольтметры, частотомеры, обмотки напряжения ваттметров, счетчиков и фазометров. Так как электрическое сопротивление этих приборов велико (порядка 1000 0м), то трансформаторы напряжения работают в режиме, близком к холостому ходу. Такой режим связан с большими магнитными потерями, а это, в свою очередь, приводит к увеличению размеров магнитопровода и устройству специального масляного охлаждения.

Измерительные трансформаторы тока (рис. 4.12.4.1) применяются для включения в сеть амперметров, обмоток тока ваттметров, счетчиков и фазометров.
Первичная обмотка трансформатора тока выполняется из провода большого поперечного сечения и включается в цепь последовательно.
Вторичная обмотка выполняется всегда на ток I2 = 5А. Рабочий режим трансформатора тока близок к короткому замыканию, поэтому размеры магнитопровода у него значительно меньше, чем у трансформатора напряжения.
Для определения напряжения или тока в цепи необходимо показания приборов умножить на коэффициент трансформации измерительных трансформаторов.
В целях безопасности нельзя оставлять вторичную обмотку трансформатора тока разомкнутой, если первичная включена в сеть. В этом режиме напряжение U2 возрастает до нескольких тысяч вольт.
Разновидностью измерительного трансформатора тока являются токоизмерительные клещи с разъемным магнитопроводом, где роль первичной обмотки выполняет сам провод, по которому течет измеряемый ток.

4.12.5. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧИСЛА ФАЗ

Для питания различных выпрямителей или для электропечей возникает необходимость в увеличении числа фазных обмоток трансформатора. Так, трехфазная система сети с помощью специального трансформатора может быть преобразована в шестифазную или двенадцатифазную. На рис. 4.12.5.1, а приведена схема шестифазного преобразователя.

Первичная обмотка такого преобразователя соединена «звездой», а вторичная — «двойной звездой». Векторная диаграмма вторичной обмотки преобразователя представляет собой шестизвездную звезду (рис. 4.12.5.1, б).

4.12.6. СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Для стабилизации напряжения в устройствах небольшой мощности (до 5 кВт) применяются электромагнитные стабилизаторы:
1) ферромагнитные насыщенного типа (без емкости), в которых используются явления, основанные на насыщении ферромагнитного сердечника;
2) феррорезонансные (с емкостью), работа которых основана на резонансе токов и напряжений.
Рассмотрим работу феррорезонансного стабилизатора. Он состоит из реактивной катушки 1, сердечник которой при заданном диапазоне напряжений U1 работает в состоянии магнитного насыщения, конденсатора С и автотрансформатора 2 магнитопровод которого не насыщен (рис. 4. 12.6.1).
Обмотка автотрансформатора включена таким образом, чтобы напряжение на выходе стабилизатора U2 было равно разности

где U2 » — напряжение на выходе автотрансформатора;
U2 ‘ — напряжение на выходах реактивной катушки.

Напряжение U2 ‘ благодаря явлению феррорезонанса имеет резко нелинейную зависимость от тока I1 (кривая 1). Напряжение на выходе автотрансформатора U2 » в виду насыщенного состояния его магнитопровода пропорционально току I1 (кривая 2).
Если параметры автотрансформатора и реактивной катушки подобраны таким образом, что наклон кривой 1 к оси абсцисс в области магнитного насыщения равен наклону кривой 2, то разность U2 ‘ — U2 » = const.
В этом случае напряжение на выходе не зависит от тока I1 (кривая 3) и, следовательно, от напряжения U1.

4.12.7. МАГНИТНЫЙ УСИЛИТЕЛЬ

Магнитный усилитель — это статический аппарат, применяемый в схемах автоматического регулирования.
Работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода (рис. 4.12.7.1).

На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек соединенных последовательно. На среднем стержне размещается обмотка управления из большого количества витков. Если ток в нее не подается, а к рабочей обмотке подведено напряжение U1, то из за малого количества витков W

магнитопровод не насыщается и почти все напряжение сети падает на сопротивление рабочих обмоток ZН. На потребителе в этом случае выделяется малая мощность.
Если теперь пропустим по обмотке управления ток IУ, то даже при небольшом его значении (из-за большого W=), возникает насыщение магнитопровода. В результате сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи — увеличивается.
Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.

4.12.8. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

В школьной практике часто возникает необходимость создания источника переменного тока повышенной частоты.
С помощью трансформаторов легко построить удвоитель или утроитель частоты.
Утроитель частоты состоит из трех однофазных трансформаторов, работающих при сильно насыщенном сердечнике (рис. 4.12.8.1).
Первичные обмотки соединены «звездой», а вторичные — последовательно. Как известно, намагничивающий ток имеет сложную форму кривой и помимо основной гармонической составляющей имеет третью, изменяющуюся с частотой f3 = 3f1.
При соединении первичной обмотки «звездой» токи основной гармоники уравно-вешиваются, и под действием третьей гармоники магнитный поток наводит во вторичной обмотке напряжение, изменяющееся с тройной частотой.

Основные уравнения трансформатора векторная диаграмма

Трансформатор, вообще, представляет собой аппарат, предназначенный для преобразования посредством магнитного поля электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения при условии сохранения неизменной частоты. Они строятся на базе индуктивно-связанных катушек, надетых на общий сердечник (рис.8.1). У воздушного трансформатора сердечник неферромагнитный.

Обмотка трансформатора, подключенная к источнику с напряжением u 1 , называется первичной обмоткой, а обмотка, к которой подключается нагрузка Z н , называется вторичной обмоткой. Число витков первичной обмотки обозначим через w 1 , а число витков вторичной обмотки — через w 2 .

При подключении первичной обмотки к источнику в последней появляется ток , создающий магнитный поток Ф 11 . Часть этого потока Ф м1 , называемая потоком взаимоиндукции первичной обмотки, пронизывает витки вторичной обмотки и обуславливает появление ЭДС в витках вторичной обмотки. Под действием этой ЭДС в цепи нагрузки появляется ток , создающий поток вторичной обмотки Ф 22 . Часть потока, создаваемого током — Ф м2 , пронизывает витки первичной обмотки, замыкаясь встречно потоку Ф м1 первичной обмотки /в соответствии с принципом Ленца/, обуславливающим ЭДС и ток . Таким образом, первичную и вторичную обмотки трансформатора можно рассматривать как две индуктивно-связанные и встречно включенные катушки.

Основные уравнения и векторная диаграмма воздушного трансформатора

Поскольку первичная и вторичная обмотки трансформатора с параметрами соответственно R 1 ,L 1 и R 2 ,L 2 представляют собой 2 индуктивно связанные и встречно включенные катушки, уравнения Кирхгофа, составленные для цепей первичной и вторичной обмоток можно записать в следующем виде

,

где u R1 , u R1 — напряжения на активных сопротивлениях первичной и вторичной обмоток трансформатора, u L1 , u L2 — напряжения на индуктивностях первичной и вторичной обмоток, u м12 — напряжение взаимоиндукции в первичной обмотке, обусловленное током вторичной обмотки, u м21 — напряжение взаимоиндукции во вторичной обмотке, обусловленное током первичной обмотки, u 2 — напряжение на нагрузке.

Поскольку ток во вторичной обмотке обусловлен напряжением взаимоиндукции u м21 , то это слагаемое во втором уравнении целесообразно перенести в левую часть и записать систему в виде

. (8.1)

Если напряжение на первичной обмотке трансформатора синусои-дально, то систему (8.1) можно записать в комплексной форме

(8.2)

Графической интерпретацией системы (8.2) является векторная диаг-рамма воздушного трансформатора, представленная на рис. 8.2.

При построении диаграммы считаются заданными векторы тока и напряжения на нагрузке , . Данная диаграмма соответствует активно-индуктивной нагрузке. Диаграмма строится в следующем порядке:

(r) (r) (r) (r) (r) (r) (r) (r) (r) (r)

Входное сопротивление трансформатора.

Вводя понятия комплексного сопротивления первичной обмотки

Z 1 =R 1 +j w L 1 , комплексного сопротивления вторичной обмотки Z 2 =R 2 +j w L 2 и комплексного сопротивления нагрузки Z н , систему (8.2) запишем в виде

(8.3)

Находя из второго уравнения системы (8.3) ток

и подставляя его в первое уравнение системы, получим

.

Из последнего выражения найдем входное сопротивление трансформатора в виде

= Z 1 + Z вн .

Следовательно, входное сопротивление трансформатора можно представить суммой 2 составляющих : комплексного сопротивления соб-ственно первичной обмотки трансформатора Z 1 и комплексного сопро-тивления Z вн , вносимого из вторичной цепи трансформатора в первичную. Именно изменением этой составляющей можно объяснить изменение тока первичной обмотки трансформатора с изменением его нагрузки.

Уравнения электрического состояния воздушного трансформатора.

В силу того , что поток Ф 11 , создаваемый током первичной обмотки трансформатора имеет 2 составляющие, т.е. Ф 11 = Ф s 1 +Ф м1 , индуктивность первичной обмотки также можно представить в виде суммы двух составляющих L 1 = L s 1 +L м1 первая из которых обусловлена потоком рассеяния первичной обмотки и называется индуктивностью рассеяния первичной обмотки L s 1 , а вторая L м1 обусловлена потоком взаимоиндукции первичной обмотки — Ф м1 и определяется выражением

L м1 = Ф м1 w 1 / i 1 = ( i 1 w 1 l м )w 1 w 2 /( i 1 w 2 )= (w 1 / w 2 )M.

Рассуждая аналогично, индуктивность вторичной обмотки также можно представить в виде суммы двух составляющих L 2 = L s 2 +L м2 , где

L м2 = Ф м2 w 2 / i 2 = ( i 2 w 2 l м )w 2 w 1 /( i 2 w 1 )= (w 2 / w 1 )M.

С учетом сказанного систему уравнений (8.2) можно привести к следующему виду

. (8.4)

Введем понятие результирующего потока взаимоиндукции /или рабочего потока/ трансформатора. Это результирующий поток, пронизывающий как первичную, так и вторичную обмотки трансформатора. Мгновенное значение этого потока равно

Ф м = Ф м1 — Ф м2 = ( i 1 w 1 l м )- ( i 2 w 2 l м )= i 1 M/w 2 — i 2 M/w 1 ,

Следовательно, ЭДС e 1 и e 2 , наводимые рабочим потоком транс-форматора в витках первичной и вторичной обмоток можно представить в виде

,

,

или в комплексной форме

,

.

Тогда систему уравнений электрического состояния трансформатора (8.4) можно переписать в виде

, (8.5)

Поскольку рабочий поток трансформатора синусоидален

,

то мгновенные значения ЭДС могут быть определены как

,

.

Таким образом, ЭДС e 1 и e 2 имеют одинаковую начальную фазу и отстают от рабочего потока на 90 эл. градусов. Действующие значения ЭДС соответственно равны

,

,

где — частота питающей сети Ф m — амплитуда рабочего потока трансформатора.

Отношение ЭДС, наводимых рабочим потоком в витках первичной и вторичной обмоток трансформатора, называется коэффициентом трансфор-мации

.

Схема замещения трансформатора и приведение его параметров

При расчете цепей с трансформатором широко используются схемы замещения, при переходе к которым действительные трансформаторные связи /электромагнитные/ заменяются электрическими связями. Эти схемы удобны для аналитического исследования установившегося и переходных режимов в трансформаторе. Схемы составляются таким образом, чтобы их токи и напряжения описывались теми же уравнениями, что и в реальном трансформаторе.

Для обоснования схемы рассмотрим трансформатор с числом витков первичной обмотки равным числу витков вторичной обмотки , то есть . Для такого трансформатора система (8.4) может быть записана в виде

Нетрудно видеть, что в этом случае . Такая система представляет собой систему уравнений Кирхгофа для электрической цепи, приведенной на рис.8.3, которую можно считать схемой замещения трансформатора для случая, если w 1 =w 2 .

Если число витков первичной и вторичной обмоток различно, то осуществляют приведение параметров трансформатора.

Приведением параметров трансформатора называется операция условной замены действительной вторичной обмотки с числом витков фиктивной вторичной обмоткой с числом витков

таким образом, чтобы физические процессы в приведенном трансформаторе оставались такими же, как и в реальном.

В силу того, что w 2 ‘=w 1 , то , где — ЭДС вторичной обмотки реального трансформатора.

Намагничивающие силы вторичной обмотки реального и приведенного трансформатора должны быть одинаковы, то есть i 2 w 2 = i ‘ 2 w’ 2 .

Следовательно, i ‘ 2 = i 2 w 2 /w’ 2 == i 2 /k, где i ‘ 2 — приведенный ток вторичной обмотки трансформатора.

Полные электромагнитные мощности в нагрузке реального и приве-денного трансформатора должны быть одинаковы, то есть U 2 I 2 = U 2 ‘I 2 ‘ Следовательно, U 2 ‘= U 2 I 2 /I 2 ‘= U 2 k, где U 2 ‘ — приведенное напряжение на нагрузке.

На основе равенства электрических потерь мощности во вторичных обмотках реального и приведенного трансформатора I 2 2 R 2 = I 2 ‘ 2 R 2 ‘, находим

R 2 ‘=(I 2 2 /I 2 ‘ 2 )R 2 =k 2 R 2 , где R 2 ‘ — приведенное активное сопротивление вторичной обмотки.

На основе равенства реактивных мощностей в инуктивностях рассеяния реального и приведенного трансформатора I 2 2 X 2 s = I 2 ‘ 2 X 2 s ‘ нахо-дим X 2 s ‘ =(I 2 2 /I 2 ‘ 2 ) X 2 s = k 2 X 2 s или w L 2 s ‘ =(I 2 2 /I 2 ‘ 2 ) w L 2 s = k 2 w L 2 s , где L 2 s ‘ — приведенная индуктивность рассеяния вторичной обмотки трансформатора.

Приведение параметров нагрузки осуществляется аналогично, т.е.

R н ‘ = R н k 2 , L н ‘ = L н k 2 , C н ‘ = C н /k2.

На схеме (рис.8.3) в скобках приведены условные обозначения элементов приведенного трансформатора.

Под идеальным или идеализированным трансформатором понимают трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток. Поскольку для такого трансформатора R 1 =R 2 =0 и L s 1 = L s 2 =0, то схема замещения его имеет вид, представленный на рис. 8.4. Входное сопротивление трансформатора определяется по формуле

.

При w M>> Zн Z вх =Z’ н =к 2 Z н .

Следовательно, идеальный трансформатор, включенный между нагрузкой и источником электроэнергии изменяет сопротивление нагрузки пропорционально квадрату коэффициента трансформации без изменения угла. Это свойство практически используется в различных областях техники /электротехники, проводной связи, радио и т.п./ для согласования сопротивлений нагрузки и источника.

1. Трансформаторы

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

1.6. Векторные диаграммы трансформатора при нагрузке

Для их построения используется электрическая схема замещения приведенного трансформатора и основные уравнения напряжений и токов. Векторные диаграммы наглядно показывают соотношения и фазовые сдвиги между токами, ЭДС, напряжениями трансформатора.

Для определения угла сдвига фаз между и необходимо знать характер нагрузки. При активно-индуктивной нагрузке (рис.1.10) вектор отстает по фазе от на угол

.

При активно-емкостной нагрузке (рис.1.11) вектор опережает по фазе на угол

.

При значительной емкостной составляющей нагрузки напряжение может оказаться больше, чем ЭДС при холостом ходе . Кроме того, реактивная составляющая тока вторичной обмотки совпадает по фазе с реактивной составляющей тока холостого хода , оказывая подмагничивающее действие на магнитопровод. Это вызывает уменьшение тока первичной обмотки по сравнению с его значением при активно-индуктивной нагрузке, когда составляющая оказывает размагничивающее действие.

Рассмотренные векторные диаграммы нагруженного трансформатора из-за их сложности не могут быть использованы для практических расчетов. По аналогии с опытом короткого замыкания в трансформаторах, работающих с нагрузкой близкой к номинальной, пренебрегают током холостого хода и считают, что .

В результате схема замещения трансформатора приобретает упрощенный вид, в ней отсутствует ветвь намагничивания. Схема состоит из последовательно включенных элементов , , (рис.1.12,а).

Упрощенную векторную диаграмму строят по значениям номинального напряжения первичной обмотки , номинального тока первичной обмотки , коэффициента мощности и параметрам треугольника короткого замыкания , , .

Поясним построение упрощенной векторной диаграммы трансформатора при активно-индуктивной нагрузке (рис.1.12,б). Произвольно, например, на оси ординат из ее начала строят вектор тока . Под углом проводят линию, на которой будет расположен вектор напряжения в соответствии с характером нагрузки. Строят — треугольник короткого замыкания. Катет ВС , равный активной составляющей напряжения короткого замыкания, совпадает по фазе с вектором тока. Катет АВ , равный реактивной составляющей напряжения короткого замыкания, опережает по фазе вектор тока на 90 .

Сдвигают треугольник  АВС , не изменяя ориентации его сторон, так, чтобы вершина С находилась на линии, направленной под углом к вектору тока, до тех пор пока расстояние от начала координат до вершины А не станет равным .

После этого определяют угол фазового сдвига между током первичной обмотки и ее напряжением 1 а также величину вектора . Все построения векторов выполняются в масштабе.

1.7. Внешние характеристики трансформатора

Изменение тока нагрузки трансформатора вызывает изменение его вторичного напряжения и коэффициента полезного действия, вследствие изменения падений напряжения и потерь активной мощности в его обмотках.

Изменение вторичного напряжения обычно выражают в процентах и определяют следующим образом:

,

где — напряжения (ЭДС) холостого хода вторичной обмотки, обычное и приведенное, при номинальном напряжении первичной обмотки; — напряжения на клеммах вторичной обмотки трансформатора, обычное и приведенное, при номинальном напряжении первичной обмотки.

Используя упрощенную векторную диаграмму трансформатора, получено выражение для расчета изменения вторичного напряжения

,

где — коэффициент нагрузки.

Из данного выражения следует, что изменение вторичного напряжения зависит от величины и характера нагрузки.

Зависимости при , приведенные на рис.1.13,а, имеют практически линейный характер, так как первое слагаемое изменяется пропорционально нагрузке, а второе в силу его малости не оказывает заметного влияния на значение .

Вторым слагаемым пренебрегают в большинстве случаев из-за его относительно малого значения и используют для расчета упрощенную формулу

.

Зависимость при имеет более сложный вид, рис.1.13,б. При , при . Наибольшее изменение напряжения имеет место при и равно . При .

Внешней характеристикой трансформатора называют зависимость

вторичного напряжения от тока нагрузки или от коэффициента нагрузки при номинальных напряжении и частоте первичной обмотки и неизменном характере нагрузки.

Для построения внешней характеристики может быть использована формула

, где .

Внешние характеристики (рис.1.14) вследствие линейности зависимости также линейны.

1.8. Регулирование напряжения трансформаторов

Напряжения в разных точках линии электропередачи, куда могут быть включены понижающие трансформаторы, отличаются друг от друга и, как правило, от номинального первичного напряжения трансформаторов. Кроме того, эти напряжения изменяются из-за колебаний нагрузки. Учитывая, что напряжение на клеммах вторичной обмотки трансформатора должно соответствовать требованиям ГОСТа, то обеспечить это возможно, в частности, изменением коэффициента трансформации.

Обмотки ВН понижающих трансформаторов имеют регулировочные ответвления, с помощью которых можно получить коэффициент трансформации, несколько отличающийся от номинального.

Регулировочные ответвления делают в каждой фазе либо вблизи нулевой точки, либо посередине фазы. В первом случае на каждой фазе делают по три или пять ответвлений, при этом среднее ответвление соответствует номинальному коэффициенту трансформации, а два (четыре) других — коэффициентам трансформации, отличающимся от номинального на и . Во втором случае каждую фазу разделяют на две части и делают шесть ответвлений, это дает возможность кроме номинального коэффициента трансформации получить еще четыре дополнительных значения, отличающихся от номинального на и .

Предусмотрены два вида регулирования напряжения силового трансформатора: регулирование напряжения путем переключения ответвлений обмотки без возбуждения (ПБВ), после отключения всех обмоток трансформатора от сети, и регулирование напряжения без перерыва нагрузки (РПН), без отключения обмоток трансформатора от сети.

Переключатели ответвлений РПН по сравнению с ПБВ имеют более сложную и громоздкую конструкцию из-за того, что каждая фаза снабжена специальным переключающим устройством. Аппаратура РПН располагается в общем баке с активной частью трансформатора, а ее переключение автоматизируется или осуществляется дистанционно (со щита управления). Трансформаторы с РПН обычно рассчитаны для регулирования напряжения в пределах 6 – 16%.

При весьма значительных мощностях трансформатора аппаратура РПН становится слишком громоздкой. В этом случае применяют регулирование напряжения с помощью вольтодобавочного трансформатора, состоящего из трансформатора ПТ, включенного последовательно, и регулировочного автотрансформатора РА с переключающим устройством ПУ (рис.1.15).

Напряжение вторичной обмотки трансформатора ПТ суммируется с напряжением линии и изменяет его до значения . Величина может изменяться регулировочным автотрансформатором РА, а фаза может изменяться на переключателем продольного регулирования ППР.

1.9. Потери и КПД трансформатора

В процессе трансформирования электрической энергии часть ее теряется в трансформаторе в виде электрических и магнитных потерь.

Электрические потери вызывают нагрев обмоток трансформатора при прохождении по ним электрического тока. Мощность электрических потерь пропорциональна квадрату тока и равна сумме электрических потерь в первичной и во вторичной обмотках ,

где m – число фаз в обмотках трансформатора.

Это выражение для электрических потерь трансформатора используется только на стадии проектирования. Для изготовленного трансформатора электрические потери определяют по результатам опыта короткого замыкания, измерив мощность короткого замыкания при номинальных токах в обмотках ,

,

где  — коэффициент нагрузки.

Так как электрические потери зависят от нагрузки трансформатора, поэтому их называют переменными.

Магнитные потери происходят главным образом в магнитопроводе трансформатора. Магнитные потери от гистерезиса прямо пропорциональны частоте перемагничивания магнитопровода, т.е. частоте переменного тока , а магнитные потери от вихревых токов пропорциональны квадрату этой частоты (). Суммарные магнитные потери принято считать пропорциональными частоте тока в степени 1,3. Величина магнитных потерь зависит и от квадрата магнитной индукции в стержнях и ярмах магнитопровода. Если и , то магнитные потери не зависят от нагрузки трансформатора, поэтому их называют постоянными. Для изготовленного трансформатора магнитные потери определяют по результатам опыта холостого хода , измерив мощность холостого хода при номинальном первичном напряжении.

Таким образом, активная мощность , поступающая из сети в первичную обмотку трансформатора, частично расходуется на электрические потери в этой обмотке , на магнитные потери в магнитопроводе. Оставшаяся мощность называется электромагнитной мощностью, и передается во вторичную обмотку, где частично расходуется на электрические потери в этой обмотке . Активная мощность, поступающая в нагрузку трехфазного трансформатора (полезная мощность), может быть определена:

или

,

где — суммарные потери в трансформаторе; — номинальная мощность трансформатора; , — линейные значения тока и напряжения вторичной обмотки.

КПД трансформатора определяется как отношение активной мощности на выходе вторичной обмотки к активной мощности на входе

первичной обмотки

,

.

Анализ записанного выражения показывает, что КПД трансформатора зависит как от величины (), так и от характера () нагрузки. Максимальное значение КПД соответствует нагрузке, при которой магнитные потери равны электрическим:, т.е. при .

Обычно КПД трансформатора имеет максимальное значение при и при дальнейшем увеличении нагрузки уменьшается относительно мало.

1.10. Схемы и группы соединений обмоток трансформаторов

Маркировка начал и концов обмоток трансформаторов выполняется следующим образом. В однофазном трансформаторе обмотка ВН обозначается прописными латинскими буквами: А – начало, Х – конец. Обмотка НН – строчными латинскими буквами: а – начало, х – конец . При наличии третьей обмотки с промежуточным (средним) напряжением начало и конец ее обозначают соответственно Am и Xm .

В трехфазном трансформаторе обмотка ВН обозначается прописными латинскими буквами: А, В, С – начала, X, Y, Z – концы. Обмотка НН – строчными латинскими буквами: a, b, c – начала, x, y, z – концы. Чередование фаз А, В, С принято считать слева направо, если смотреть на трансформатор со стороны отводов обмотки ВН.

В большинстве случаев обмотки трехфазных трансформаторов соединяются либо в “звезду” (Y), либо в “треугольник” () и реже в “зигзаг” (Z). Первые две схемы соединения трехфазных обмоток обозначаются прописными русскими буквами: соответственно У, Д.

Клеммы нулевой точки при соединении трехфазной обмотки в “звезду” или “зигзаг” Рис. 1.16

обозначаются в обмотке ВН прописной буквой О , а в обмотке НН строчной буквой о. При этом к буквенным обозначениям схем соединения обмоток добавляют индекс “н” (Y н , Z н ).

Для включения трансформатора на параллельную работу с другими трансформаторами особое значение имеет сдвиг фаз между ЭДС первичной и вторичной обмоток. Для характеристики этого сдвига используется понятие о группе соединения обмоток.

Изобразим фрагмент стержневого магнитопровода однофазного двухобмоточного трансформатора (рис.1.16). Обе обмотки намотаны по левой винтовой линии, имеют одинаковое направление намотки. У обеих обмоток начала А и а находятся сверху, а концы Х и х – снизу, т.е. одинаково промаркированы.

Будем считать ЭДС наводимую в обмотке, положительной, если она действует от конца обмотки к ее началу. В обеих обмотках ЭДС наводит один и тот же основной магнитный поток. А одинаковые направления намотки и одинаковая маркировка позволяют утверждать, что названные ЭДС этих обмоток в каждый момент времени действуют в одинаковом направлении, т.е. одновременно положительны или отрицательны.

ЭДС и совпадают по фазе. Угол между векторами ЭДС первичной и вторичной обмоток равен нулю. Условное обозначение (нулевая группа).

Если в одной из обмоток сменить маркировку на обратную (рис.1.17) или

изменить направление намотки, то в каждый момент времени в обмотках будут действовать ЭДС противоположные по знаку. Угол между векторами ЭДС первичной и вторичной обмоток равен 180 . Для определения группы соединения обмоток этот угол необходимо разделить на 30 . Условное обозначение (шестая группа).

Таким образом, в однофазных трансформаторах возможно получить только две группы соединения обмоток: нулевую и шестую.

Рассмотрим теперь трехфазный двухобмоточный трансформатор с соединением обмоток ВН и НН в “звезду” при выполнении следующих условий:

1. Обмотки имеют одинаковое направление намотки;

2. Обмотки одинаково промаркированы;

3. Одноименные фазы обмоток находятся на общих стержнях.

Сначала строится векторная диаграмма для обмотки ВН, произвольно выбрав направление первой из фазных ЭДС, соблюдая для остальных фазных ЭДС чередование фаз. При построении векторной диаграммы для обмотки НН направление каждого из векторов зависит от векторной диаграммы обмотки ВН.

Тогда все вектора фазных ЭДС попарно и , и, и а также все вектора линейных ЭДС попарно и, и, и в каждый момент времени совпадают по фазе, т.е. угол между ними равен нулю (рис.1.18).

В трехфазных трансформаторах группа соединения обмоток определяется по углу между одноименными линейными ЭДС. В рассматриваемом случае условное обозначение (нулевая группа).

К каким изменениям приведет, например, смена маркировки обмотки НН вкруговую на одни шаг? Векторную диаграмму ЭДС для обмотки ВН оставляем изображенной без изменения. Векторная диаграмма ЭДС обмотки НН будет иной. Фаза а-х обмотки НН расположена теперь на общем стержне с фазой В-Y обмотки ВН и вследствие того, что фазы имеют одинаковое направление намотки и одинаково промаркированы, магнитный поток стержня наводит в этих фазах одинаковые по направлению ЭДС. Вектор обмотки НН необходимо изобразить совпадающим по фазе с вектором обмотки ВН.

Подобными будут рассуждения при обосновании направлений векторов и В итоге векторная диаграмма ЭДС обмотки НН повернулась по часовой стрелке на по сравнению с предыдущей векторной диаграммой. Угол между одноименными линейными ЭДС определяется по часовой стрелке от вектора ЭДС обмотки ВН до вектора ЭДС обмотки НН. Угол равен , группа четвертая. Условное обозначение .

Таким образом, при смене маркировки одной из обмоток вкруговую на один шаг группа соединения обмоток изменяется на четыре, т.к. вектора линейных ЭДС поворачиваются на по часовой стрелке.

Подобные результаты будут получены, если обмотки ВН и НН имеют другую, но также одинаковую схему соединения обмоток – “треугольник”.

Итак, если схемы соединения обмоток ВН и НН трехфазного трансформатора одинаковые, то, изменяя маркировку одной из обмоток, могут быть получены шесть четных групп: 0, 4, 8, 6, 10, 2.

Рассмотрим теперь трехфазный двухобмоточный трансформатор при разных схемах соединения обмоток (рис.1.20) с соблюдением тех же трех условий, как и при рассмотрении исходной ситуации в случае одинаковых схем соединения обмоток. Обмотка НН соединена по схеме “треугольник”. Векторная диаграмма ЭДС обмотки ВН строится как и в предыдущих случаях.

Векторная диаграмма ЭДС обмотки НН представляет собой треугольник, каждая из сторон которого по величине и фазе равна одновременно фазной и линейной ЭДС Угол между одноименными линейными ЭДС равен группа одиннадцатая. Условное обозначение .

Изменение маркировки обмотки НН вкруговую на один шаг изменит группу соединения обмоток на четыре, будет получена третья группа. Если вновь сменить маркировку обмотки НН вкруговую на один шаг, то группа соединения обмоток вновь изменится на четыре, будет получена седьмая группа.

Не трудно предположить и подтвердить, что у трехфазного трансформатора при различных схемах соединения обмоток изменения маркировки одной из обмоток позволяет получить шесть нечетных групп: 11, 3, 7, 5, 9, 1.

ГОСТом предусматривается изготовление трансформаторов со следующими схемами и группами соединения обмоток: 1.; 2.; 3.; 4.; 5. .

При схеме соединения “зигзаг” каждая фаза обмотки разделяется на две части, которые располагаются на разных стержнях (одна на основном, а вторая на стержне соседней, в порядке чередования, фазы). При этом вторая половина каждой фазы подключается по отношению к первой половине встречно. Это позволяет получить ЭДС фазы в раз больше, чем при согласном включении.

Однако при встречном включении половин фаз ЭДС каждой фазы будет все же меньше в 1,15 раза, чем при расположении половин фаз на одном стержне. Поэтому расход обмоточного провода при соединении по схеме “зигзаг” увеличивается на 15%. Это соединение используется только в случае, когда возможна несимметричная нагрузка фаз с наличием токов нулевой последовательности.


источники:

http://ets.ifmo.ru/tolmachev/et1/ET1_8/text.htm

http://gigabaza.ru/doc/73189-p2.html