Основы решения уравнений с параметрами

Уравнения с параметром

Разделы: Математика

Справочный материал

Уравнение вида f(x; a) = 0 называется уравнением с переменной х и параметром а.

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х, удовлетворяющие этому уравнению.

Если 1 – а = 0, т.е. а = 1, то х0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х.

если а = 5, то х = = ;

Дидактический материал

3. а = +

4. + 3(х+1)

5. =

6. =

Ответы:

  1. При а1 х =;
  1. При а3 х = ;
  1. При а1, а-1, а0 х = ;

при а = 1 х – любое действительное число, кроме х = 1

  1. При а2, а0 х = ;
  1. При а-3, а-2, а0, 5 х =
  1. При а + с0, с0 х = ;

Квадратные уравнения с параметром

Пример 1. Решить уравнение

х = –

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

a =

a =

Если а -4/5 и а 1, то Д > 0,

х =

х = – = –

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

В итоге4(а – 1)(а – 6) > 0
— 2(а + 1) 0
а 6
а > — 1
а > 5/9

6

Пример 3. Найдите значения а, при которых данное уравнение имеет решение.

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а(а – 4) 0

а(а – 4)) 0

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3аа 2 ) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + ха = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

Показательные уравнения с параметром

Пример 1.Найти все значения а, при которых уравнение

9 х – (а + 2)*3 х-1/х +2а*3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х , получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у, тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log32 , или х 2 – хlog32 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 32 – 4 х+1/х = а то х + 1/х = log3а, или х 2 – хlog3а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 32 – 4 > 0, или |log3а| > 2.

Если log3а > 2, то а > 9, а если log3а 9.

Пример 2. При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х1 = -3, х2 = а = >

а – положительное число.

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х — (5а-3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Ответ:

  1. 0 25/2
  2. при а = 1, а = -2,2
  3. 0 0, х1/4 (3)

х = у

Если а = 0, то –2у + 1 = 0
2у = 1
у = 1/2
х = 1/2
х = 1/4

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.

Если Д = 0 (а = 1), то (4) имеет единственный положительный корень х = 1, удовлетворяющий условиям (3).

Пусть Д > 0 (а 0 уравнение (4) имеет действительные корни разных знаков. Это условие выполняется тогда и только тогда, когда Д > 0 и 1/а х

Выражая х из (1) и подставляя в (2), получаем неравенство

2 – а > 1 – а (3)

Чтобы решить неравенство (3), построим графики функций у = 2 – а и у = 1 – а.

Решения неравенства (3) образуют промежуток (а0; 2), где а0 2

а0 =

Ответ: x + 9a 3 ) = x имеет ровно два корня.

  • Найдите, при каких значениях а уравнение log 2 (4 x – a) = x имеет единственный корень.
  • При каких значениях а уравнение х – log 3 (2а – 9 х ) = 0 не имеет корней.
  • Ответы:

      при а 16.06.2009

    Решение уравнений с параметрами

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    «Актуальность создания школьных служб примирения/медиации в образовательных организациях»

    Свидетельство и скидка на обучение каждому участнику

    Решение уравнений с параметрами

    Зверяка Светлана Усманбаевна, преподаватель математики ОП «Луганский профессиональный торгово-кулинарный колледж ЛНУ имени Тараса Шевченко», специалист І категории

    Коробова Елена, обучающаяся 68 группы ОП «ЛПТКК ЛНУ им. Тараса Шевченко»

    если с самого начала мы можем предвидеть –

    и далее подтвердить это, — что,

    следуя этому методу, мы достигнем цели.»

    В повседневной жизни мы очень часто сталкиваемся с понятием параметра: параметр загрузки в W indows 10 , параметры бытовых приборов, параметры автомобиля. Покупая какую-то вещь, мы внимательно изучаем ее основные характеристики. Так, приобретая компьютер, мы обращаем внимание на следующие его параметры: производительность, габариты, состав комплектующих, цену и др… Исследование многих жизненных процессов осуществляется с помощью параметров. Например, состояние больного определяется с помощью параметров температуры, давления. Для оценки состояния спортсмена в качестве параметра используется частота сердечных сокращений. Положение движущегося тела в пространстве определяется параметром времени. В изолированном сосуде данного объема давление газа характеризуется параметром температуры.

    Толковый словарь определяет параметр как величину, характеризующую какое-нибудь основное свойство машины, устройства, системы или явления, процесса. (Ожегов С.И. , Шведова Н.Ю. Толковый словарь русского языка. Москва. 1999). Рассмотрение параметров — это всегда выбор. Перед выбором мы стоим и в различных жизненных ситуациях.

    Вспомним сказку. В чистом поле стоит столб, а настолбу написаны слова: «Кто поедет от столба сего прямо, тот будет голоден и холоден; кто поедет в правую сторону, тот будет здрав и жив, а конь его будет мертв; а кто поедет в левую сторону, тот сам будет убит, а конь его жив и здрав останется!» Иван-царевич прочел эту надпись и поехал в правую сторону, держа на уме: хоть конь его и убит будет, зато сам жив останется и со временем сможет достать себе другого коня. (“Иван-царевич и серый волк” Русская народная сказка).

    Но это в сказке, а что же собой представляет параметр в математике? Какую роль он играет при решении уравнений? Какими методами решаются уравнения с параметрами?

    Актуальность данной темы определяется необходимостью уметь решать такие уравнения с параметрами при сдач е государственной итоговой аттестации и на вступительных экзаменах в высшие учебные заведения.

    Цель данной работы систематизировать уравнения, содержащие параметр, и составить алгоритм их решения с учетом свойств различных функций.

    Для достижения поставленной цели необходимо решить следующие задачи:

    1) дать определения понятиям «уравнение с параметрами»;

    2) показать принцип решения данных уравнений на общих случаях;

    3) показать решение уравнений с параметрами, связанных со свойствами линейной, квадратичной, рациональной и иррациональной функциями, используя различные методы.

    4) составить алгоритм решения уравнений с параметрами, с учетом свойств различных функций.

    Для выполнения поставленной цели были использованы следующие методы: изучение и анализ литературы разного типа, работа в группах на уроках алгебры и факультативных занятиях по математике, апробация полученных результатов на уроках математики.

    Объектом исследовательской работы было решение уравнений с параметрами, связанных со свойствами выше представленных функций.

    М ы выбрали эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, была ставлена цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Данная работа поможет понять другим ученикам, как решаются уравнения с параметрами, применяя аналитический и графического методы, узнать о происхождении таких уравнений. В работе приводятся теоретические основы решения уравнений, содержащих параметр. Рассмотривается аналитический и графический способы решения основных видов уравнений, содержащих параметр.

    В работе рассмотрены часто встречающиеся типы уравнений, и, надеемся, что знания, полученные нами в процессе работы, помогут при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на ГИА. В первой части изложен наиболее стандартный, аналитический способ решения уравнений, а во второй – графический.

    Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях.

    ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ,

    Основной принцип решения параметрических уравнений можно сформулировать так: необходимо разбить область изменения параметра на участки, такие, что при изменении параметра в каждом из них получающиеся уравнения можно решить одним и тем же методом. Отдельно для каждого участка находятся корни уравнения, выраженные через значения параметра, используемые для этого приемы в точности таковы, как и при решении уравнений с постоянными коэффициентами. Поскольку каждый из методов представляет собой последовательность определенных действий, которые могут выполняться по-разному в зависимости от значений параметра, то выбранные первоначально участки его изменения в процессе решения могут дробиться с тем, чтобы на каждом из них рассуждения проводились единообразно. Ответ задачи состоит из списка участков изменения параметра с указанием для каждого участка всех корней уравнения.

    Для разбиения множества значений параметра на участки удобно воспользоваться теми значениями параметра, при которых или при переходе через которые происходят качественные изменения уравнения. Такие значения параметра будем называть контрольными.

    Основное, что нужно усвоить при решении таких уравнений. Параметр – это буква, которая «никому ничем не обязана» и может принимать любые допустимые значения. Поэтому с ней нужно необходимость осторожно, даже деликатно, помня, что это фиксированное, но неизвестным числом.

    2.1. История возникновения уравнений с параметром

    Задачи на уравнения с параметром встречались уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

    В уравнении коэффициенты, кроме параметра a , могут быть и отрицательными.

    В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений с параметром а. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

    1) «Квадраты равны корням», т. е.

    2) «Квадраты равны числу», т. е.

    3) «Корни равны числу», т. е

    4) «Квадраты и числа равны корням», т. е.

    5) «Квадраты и корни равны числу», т. е.

    6) «Корни и числа равны квадратам», т. е.

    Формулы решения квадратных уравнений по Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи.

    Вывод формулы решения квадратного уравнения с параметром в общем виде имеется у Виета, однако Виета признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в ХII в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принял современный вид.

    История возникновения графического метода далеко уходит в древние века. Исследование общих зависимостей началось в 14 веке. Средневековая наука была схоластической. При таком характере не оставалось места изучению количественных зависимостей, речь шла лишь о качествах предметов и их связях друг с другом.

    Французский ученый Николай Оресм стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им «линией интенсивностей» или «линией верхнего края» (график соответствующей функциональной зависимости). Оресм изучал даже «плоскостные» и «телесные» качества, т.е. функции, зависящие от двух или трех переменных.

    Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: Равномерные (с постоянной интенсивностью), равномерно-неравномерные (с постоянной скоростью изменения интенсивности) и неравномерно-неравномерные (все остальные), а также характерные свойства графиков таких качеств.

    Чтобы создать математический аппарат для изучения графиков функций, понадобилось понятие переменной величины. Это понятие было введено в науку французским философом и математиком Рене Декартом (1596-1650). Именно Декарт пришел к идеям о единстве алгебры и геометрии и о роли переменных величин, Декарт ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему.

    Таким образом, графики функций за все время своего существования прошли через ряд фундаментальных преобразований, приведших их к тому виду, к которому мы привыкли. Каждый этап или ступень развития графиков функций — неотъемлемая часть истории современной алгебры и геометрии.

    Графический способ определения числа корней уравнения в зависимости от входящего в него параметра является более удобным, чем аналитический.

    2.2. Теорема Виета

    Теорема, выражающая связь между параметрами, коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если b + d , умноженное на α минус α 2 , равно bc , то α равно b и равно d ».

    Чтобы понять Виета, следует вспомнить, что α, как и всякая гласная буква, означала у него неизвестное (наше х ), гласные же b, d – коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает:

    Если имеет место

    Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виета установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

    2.3. Аналитический метод решения задач с параметрами.

    2.3.1. Линейные уравнения с параметрами

    Уравнение вида , где – некоторые постоянные, называется линейным уравнением.

    Если , то линейное уравнение имеет единственный корень: .

    Если , переписав исходное уравнение в виде , легко видеть, что любое х является решением линейного уравнения.

    Если а, то линейное уравнение не имеет корней.

    Класс линейных уравнений с параметром выделяется с помощью двух характеристик:

    1. В уравнении переменная х находится в первой степени;

    2. При помощи равносильных преобразований на области допустимых значений параметра уравнение приводится к стандартному виду

    Основываясь на основные свойства линейной функции, можно составить алгоритм решения. В зависимости от вида уравнения некоторые пункты его могут быть опущены (Приложение 1).

    Решить уравнение: , если а – параметр.

    1. Область допустимых значений параметра – вся числовая прямая.

    2. Приведем уравнение к виду.

    3. Контрольными являются те значения параметра, при которых коэффициент при х обращается в нуль. Такими значениями будут.

    4. Если , то уравнение примет вид . Это уравнение не имеет корней.

    Если , то уравнение примет вид . Корнем этого уравнения является любое действительное число.

    Ответ: если , то корней нет;

    Решить уравнение: , если а – параметр.

    1. Область допустимых значений параметра – вся числовая прямая.

    2. Приведем уравнение к виду .

    3. Контрольные значения параметра: .

    4. Если , то уравнение примет вид . Это уравнение не имеет корней.

    Если , то уравнение примет вид. Корнем этого уравнения является любое действительное число.

    Ответ: если , то корней нет;

    Область допустимых значений параметра – вся числовая прямая.

    Приведем уравнение к виду

    Контрольные значения параметра: .

    если , то уравнение принимает вид , x

    если , то уравнение имеет один корень

    2.3.2. Квадратные уравнения, содержащие параметр

    Класс уравнений второй степени с параметрами определяется с помощью двух характеристик:

    1. Переменная х в уравнении находится в первой и второй степенях;

    2. При помощи равносильных преобразований на области допустимых значений параметра уравнение приводится к стандартному виду

    Контрольные значения параметра определяются дискриминантом D . На выделенных контрольными значениями промежутках допустимых значений параметра дискриминант имеет определенный знак, соответствующие частные уравнения принадлежат одному из типов:

    Если , то уравнение имеет два корня:

    Если , то уравнение имеет один корень кратности два или два равных корня

    Если , то уравнение не имеет действительных корней.

    Тогда решением всякого уравнения с параметром не выше второй степени осуществляется по следующим этапам:

    На числовой прямой отмечаются все контрольные значения параметра, для которых соответствующие частные уравнения не определены.

    На области допустимых значений параметра исходного уравнения при помощи равносильных преобразований приводится к виду .

    Выделяют множество контрольных значений параметра, для которых .

    Если уравнение имеет конечное множество решений, то для каждого найденного контрольного значения параметра соответствующее частное уравнение решается отдельно. Проводится классификация частных уравнений по первым трем типам.

    На бесконечном множестве решений уравнения проводится решение уравнения , выделяются типы бесконечных и пустых особых частных уравнений. Множеству значений параметра, для которых и , соответствует третий тип не особых частных уравнений.

    Выделяются контрольные значения параметра, для которых дискриминант обращается в нуль. Соответствующие не особые частные уравнения имеют двукратный корень .

    Найденные контрольные значения параметра разбивают область допустимых значений параметра на промежутки. На каждом из промежутков определяется знак дискриминанта.

    Множеству значений параметра, для которых и, соответствует тип не особых частных уравнений, не имеющих решений, для значений параметра из множества, где и , частные уравнения имеют два различных действительных корня [ Горнштейн, П.И. Задачи с параметрами: учеб.пособие/ П.И. Горнштейн, В.Б. Полонский, М.С. Якир – Киев, 1992. ],[5],[19].

    Из этого следует алгоритм решения квадратных уравнений с параметрами. В зависимости от вида уравнения некоторые пункты его могут быть опущены (Приложение 2)

    Область допустимых значений параметра – вся числовая прямая.

    Контрольным значением параметра является .

    при уравнение будет линейное

    при уравнение будет квадратным

    Если , то уравнение примет вид . Отсюда .

    При уравнение является квадратным. Найдем дискриминант уравнения:

    Контрольное значение параметра

    Оценим знак дискриминанта

    Если и действительных корней нет.

    Область допустимых значений параметра – вся числовая прямая.

    Контрольное значение параметра .

    Если , то уравнение будет линейным и примет вид

    Если , то уравнение будет квадратным с дискриминантом

    Уравнения с параметрами.

    Исследование и решение уравнений с параметрами считается не самым простым разделом школьной математики. Однако, параметр, как понятие, часто воспринимается школьниками гораздо более сложным, чем есть в действительности. Здесь в первом пункте представлены очень простые вводные примеры использования параметров в уравнениях. Те, для кого это понятие не составляет большой трудности, могут сразу перейти к решению задач, которые представлены ниже.

    Что такое уравнение с параметром?

    Допустим нам нужно решить уравнение 2х + 5 = 2 − x.
    Решение: 2x + x = 2 − 5; 3x = −3; x = −3/3 = −1.

    Теперь нужно решить уравнение 2x + 5 = 3 − x.
    Решение: 2x + x = 3 − 5; 3x = −2; x = −2/3

    Затем нужно решить уравнение 2x + 5 = 0,5 − x.
    Решение: 2x + x = 0,5 − 5; 3x = −4,5; x = −4,5/3 = −1,5.

    А потом может потребоваться решить уравнение 2x + 5 = 10,7 − x или уравнение 2x + 5 = −0,19 − x.
    Понятно, что уравнения похожи, а потому их решение будет сопровождаться теми же действиями, что выше. Возникает естественный вопрос — сколько можно делать одно и то же?

    Уменьшим себе трудозатраты. Заметим, что все эти уравнения отличаются только одним числом в правой части. Обозначим это число символом a .
    Получим уравнение 2х + 5 = aх,
    где aпеременная величина, вместо которой можно подставить нужное числовое значение и получить нужное уравнение. Эта переменная и называется параметром.

    Решим это уравнение так же, как и все предыдущие.
    Решение: 2х + 5 = ax; 2x + x = a − 5; 3x = a − 5; x = (a − 5)/3.

    Теперь для того, чтобы найти ответы для двух последних примеров, мы можем не повторять полностью всё решение каждого уравнения, а просто подставить в полученную формулу для х числовое значение параметра а:
    x = (10,7 − 5)/3 = 5,7/3 = 1,9;
    x = (−0,19 − 5)/3 = −5,19/3 = −1,73.

    Таким образом, под термином «уравнение с параметром», фактически, скрывается целое семейство «почти одинаковых уравнений» , которые отличаются друг от друга только одним числом (одним слагаемым или одним коэффициентом) и одинаково решаются. Параметр — это число, которое меняется от уравнения к уравнению.
    Полученную формулу для корня уравнения мы можем запрограммировать на компьютере. Достаточно будет только ввести значение параметра a, чтобы получить решение любого такого уравнения.

    Рассмотрим еще один пример.

    Замечаем, что они похожи друг на друга и отличаются только первым коэффициентом. Обозначим его, например, символом k.
    Решим уравнение + 5 = 2 − x с параметром k.

    С помощью этой формулы вычислим все ответы для приведенных уравнений.
    x = −3/(2 + 1) = −1
    x = −3/(3 + 1) = −0,75
    x = −3/(−4 + 1) = 1
    x = −3/(17 + 1) = −1/6

    Можем ли мы теперь запрограммировать эту формулу и сказать, что с её помощью можно решить любое аналогичное уравнение?
    Запрограммировать можем. Компьютер справится как с очень большими значениями коэффициента, так и с очень маленькими.
    Например, если введём k = 945739721, то для уравнения заданного вида будет получен корень примерно равный −0,0000000031721201195353831188, если k = 0,0000004, то получим корень ≈ −2,9999988000004799998080000768.
    Но, если мы введем в программу, казалось бы, более простое значение k = −1, то компьютер зависнет.
    Почему?

    Посмотрим внимательнее на формулу x = −3/(−1 + 1) = −3/0. Деление на ноль.
    Посмотрим на соответствующее уравнение −1·х + 5 = 2 − x.
    Преобразуем его −х + x = 2 − 5.
    Оказывается, оно равносильно уравнению 0 = −3 (. ) и не может иметь корней.
    Таким образом, из общего подхода к решению «почти одинаковых уравнений» могут существовать исключения, о которых нужно позаботиться отдельно. Т.е. провести предварительное исследование всего семейства уравнений. Именно этому и учатся на уроках математики с помощью так называемых задач с параметрами.

    Графические способы решения уравнений

    Сначала вспомним, что представляет собой графический способ решения обычного уравнения (без параметра).
    Пусть дано уравнение вида f(x) = g(x) . Построим графики функций y = f(x) и y = g(x) и найдём точки пересечения этих графиков. Абсциссы точек пересечения и есть корни уравнения.

    Для быстрого построения эскизов графиков повторите еще раз графики элементарных функций, которые изучаются в школьном курсе математики, и правила преобразования графиков функций.

    Рассмотрим примеры.

    1. Решить уравнение
    2х + 5 = 2 − x

    Ответ: x = −1.

    2. Решить уравнение
    2х 2 + 4х − 1 = 2х + 3

    3. Решить уравнение
    log2х = −0,5х + 4

    Ответ: x = 2.

    Первые два из приведенных уравнений вы можете решить и аналитически, так как это обычные линейное и квадратное уравнения. Второе уравнение содержит функции разных классов — степенную (здесь линейную) и трансцендентную (здесь логарифмическую). Для таких случаев выбор способов решения у школьников очень ограничен. Фактически, единственным доступным способом является именно графическое решение.

    Внимание: Для корней, найденных графическим способом, обязательна проверка! Вы уверены, что на третьем рисунке пересечение именно в точке х = 4 , а не в точке 3,9 или 4,1? А если на реальном экзамене у вас нет возможности построить график достаточно точно? На чертеже «от руки» разброс может быть еще больше. Поэтому алгоритм действий должен быть следующим:

    1. Предварительный вывод: х ≈ 4.
    2. Проверка: log24 = −0,5·4 + 4; 2 = −2 + 4; 2 ≡ 2.
    3. Окончательный вывод х = 4.

    Чтобы графически решать уравнения с параметрами надо строить не отдельные графики, а их семейства.

    Решение уравнений с параметрами с помощью графиков.

    Задача 1.

    Найти все значения параметра q при которых уравнение |x + 1| − |x − 3| − x = q 2 − 8q + 13 имеет ровно 2 корня.

    При каждом значении параметра q можно вычислить значение выражения q 2 − 8q + 13 . Результат обозначим переменной а.
    Т.е. примем q 2 − 8q + 13 = a и решим уравнение с параметром |x + 1| − |x − 3| − x = a

    Строим график функции y = |x + 1| − |x − 3| − x , расположенной в левой части уравнения.
    Для этого разобьём числовую ось на отрезки точками, в которых каждый из встречающихся модулей принимает нулевое значение.


    Для каждого из этих участков раскроем модули с учётом знаков.
    Вспомним: по определению |x| = x, если х ≥ 0, и |x| = −x, если х Чтобы проверить знаки модулей на участке достаточно подставить любое промежуточное значение x из этого отрезка, например, −2, 0 и 4.

    Таким образом на участке I, где −∞ имеем −(x + 1) + (x − 3) − x = − x − 4.
    Следовательно, должны построить график функции y = − x − 4 .
    Это линейная функция. Её график прямая линия, которую можно построить по двум точкам, например, x = 0, y = −4 и у = 0, x = −4. Cтроим всю прямую бледной линией, а затем выделяем часть графика, относящуюся только к рассматриваемому участку.

    Аналогично, разбираемся с оставшимися двумя участками.

    На участке II, где −1 имеем (x + 1) + (x − 3) − x = x − 2
    и должны построить соответствующую часть графика функции y = x − 2 .

    На участке III, где 3 , имеем (x + 1) − (x − 3) − x = − x + 4
    и должны построить соответствующую часть графика функции y = − x + 4 .

    Последовательное построение итогового графика показано ниже. (Чтобы увеличить рисунок, нужно щелкнуть по нему левой кнопкой мыши.)

    Замечание: если вы освоили тему Преобразование графиков функций, то с этой частью задачи сможете справиться быстрее, чем показано в примере.

    Итак, построение графика функции, расположенной в левой части уравнения, мы завершили. Посмотрим, что находится в правой части.

    График функции y = a представляет собой прямую линию, параллельную оси абсцисс (Ox), и пересекающую ось ординат (Oy) в точке а. Так как а — параметр, который может принимать разные значения, то нужно построить целое семейство таких параллельных линий, пересекающих ось ординат на разной высоте. Очевидно, что все графики семейства построить мы не сможем, поскольку их бесконечное множество. Изобразим для примера несколько штук в районе уже построенного графика функции. Ниже прямые семейства y = a показаны красным цветом.

    Из рисунка видно, что количество точек пересечения каждой из красных прямых с ранее построенным (зелёным) графиком зависит от высоты, на которой расположена эта прямая, т.е. от параметра а. Прямые, расположенные ниже y = −3 , пересекают график в одной точке, а значит эти уравнения имеют только одно решение. Прямые, проходящие на уровне −3 имеют по три точки пересечения, значит соответствующие уравнения будут иметь по три решения. Прямые, расположенные выше точки y = 1 , снова имеют только по одной точке пересечения.
    Ровно две точки пересечения с зелёным графиком будут иметь только прямые y = 1 и y = −3 . Соответствующие уравнения будут иметь ровно два корня, что и требовалось определить в задании.

    Однако мы нашли значения введённого нами параметра а, при котором заданное уравнение имеет 2 корня, а вопрос задачи состоял в том, чтобы найти все значения параметра q. Для этого придётся решить следующую совокупность уравнений:

    Это обычные квадратные уравнения, которые решаются через дискриминант или по теореме Виета.

    Таким образом, окончательный ответ: <2;4;6>.

    Задача 2.

    Найти все значения параметра a, при которых уравнение (2 − x)x(x − 4) = a имеет ровно 3 корня.

    Рассмотрим функцию y = (2 − x)x(x − 4) . Видно, что если раскрыть скобки, то старший член будет х 3 . Т.е. графиком функции должна быть кубическая парабола, причем на при x, стремящемcя к +∞, y → −∞, а при x, стремящемся к −∞, y → +∞.
    Поскольку уравнение (2 − x)x(x − 4) = 0 имеет три корня 2, 0 и 4, то график функции будет пересекать ось абсцисс трижды.
    Понятно, что при упомянутых условиях график непрерывной функции должен иметь участок с «волной». Строим от руки эскиз графика.

    Правая часть уравнения y = a такая же, как в предыдущей задаче. Поэтому дальнейшие построения не требуют комментариев. Смотрите рисунки. Чтобы увеличить, используйте щелчок мышью.

    Из рисунков видно, что прямые, отделяющие линии с тремя точками пересечения от других случаев, проходят через экстремумы кубической функции. Поэтому определяем значения ymax и ymin через производную. (Исследовать функцию полностью не нужно, так как примерное положение точек экстремума мы видим на эскизе графика.) Обратите внимание на то, что при вычислении значений функции используются точные значения x и формулы сокращенного умножения. Приближенные значения в промежуточных вычислениях не используют.

    Ответ:

    Задача для самостоятельного решения

    Задача 3.

    При каком наибольшем отрицательном значении параметра а уравнение имеет один корень?

    Ответ: -1,625

    Задача реального экзамена ЗНО-2013 (http://www.osvita.ua/).

    Переход на главную страницу сайта «Математичка».

    Есть вопросы? пожелания? замечания?
    Обращайтесь — mathematichka@yandex.ru

    Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.


    источники:

    http://infourok.ru/reshenie-uravnenij-s-parametrami-4508225.html

    http://mathematichka.ru/school/parametry/param_equation.html