Отделение корней уравнений численные методы

Численные методы решения нелинейных уравнений

В этом разделе приведены примеры решенных задач по теме нахождения корней нелинейных уравнений численными методами. На первом этапе обычно происходит локализация (отделение) корней (графически или аналитически), на втором — уточнение (поиск) корней разными методами: Ньютона, Стеффенсена, секущих, хорд, касательных, простой итерации.

Примеры приближенных решений нелинейных уравнений онлайн

Задача 1. Методом бисекции найти решение нелинейного уравнения на отрезке $[a;b]$ с точностью $\varepsilon = 10^<-2>$. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью $\varepsilon=10^<-4>$. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.

Задача 2. Отделить корни нелинейного уравнения аналитически $2 arcctg x -x+3=0$.

Задача 3. Отделить корни нелинейного уравнения аналитически и уточнить один из них методом проб с точностью до 0,01. $$3x^4-8x^3-18x^2+2=0.$$

Задача 4. Отделить корни нелинейного уравнения графически (например, в среде EXCEL) уточнить один из них методом проб с точностью до 0,01. $$x^2-20 \sin x =0.$$

Задача 5. Отделите корни уравнения графически и уточните один из них методом хорд с точностью до 0,001. Уточните один из корней этого уравнения методом касательных с точностью до 0,001. $$ \sqrt — \cos 0.387 x =0.$$

Задача 6.Отделить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. $$\sqrt=\frac<1>.$$

Задача 7. На отрезке $[0;2]$ методом Ньютона найти корень уравнения $-x^3-2x^2-4x+10=0$ с точностью 0,01.

Задача 8. Методом хорд найти отрицательный корень уравнения $x^3-2x^2-4x+7=0$ с точностью 0,0001. Требуется предварительное построение графика функции и отделение корней.

Задача 9. Решить нелинейные уравнения с точностью до 0.001. $$1)\, x^3-12x-5=0\, (x \gt 0), \, 2)\, \tan x -1/x=0. $$

Численные методы решения нелинейных уравнений

Если законы функционирования модели нелинейны, а моделируемые процесс или система обладают одной степенью свободы (т.е. имеют одну независимую переменную), то такая модель, как правило, описывается одним нелинейным уравнением.

Необходимость отыскания корней нелинейных уравнений встречается в расчетах систем автоматического управления и регулирования, собственных колебаний машин и конструкций, в задачах кинематического анализа и синтеза, плоских и пространственных механизмов и других задачах.

Дано нелинейное уравнение:

( 4.1)

Необходимо решить это уравнение, т. е. найти его корень .

Если функция имеет вид многочлена степени m,

где ai — коэффициенты многочлена, , то уравнение f(x)=0 имеет m корней (рис. 4.2).

Если функция f(x) включает в себя тригонометрические или экспоненциальные функции от некоторого аргумента x , то уравнение (4.1) называется трансцендентным уравнением .

Такие уравнения обычно имеют бесконечное множество решений.

Как известно, не всякое уравнение может быть решено точно. В первую очередь это относится к большинству трансцендентных уравнений .

Доказано также, что нельзя построить формулу, по которой можно было бы решать произвольные алгебраические уравнения степени, выше четвертой.

Однако точное решение уравнения не всегда является необходимым. Задачу отыскания корней уравнения можно считать практически решенной, если мы сумеем найти корни уравнения с заданной степенью точности . Для этого используются приближенные (численные) методы решения.

Большинство употребляющихся приближенных методов решения уравнений являются, по существу, способами уточнения корней. Для их применения необходимо знание интервала изоляции [a,b] , в котором лежит уточняемый корень уравнения (рис. 4.3).

Процесс определения интервала изоляции [a,b] , содержащего только один из корней уравнения, называется отделением этого корня.

Процесс отделения корней проводят исходя из физического смысла прикладной задачи, графически, с помощью таблиц значений функции f(x) или при помощи специальной программы отделения корней. Процедура отделения корней основана на известном свойстве непрерывных функций: если функция непрерывна на замкнутом интервале [a,b] и на его концах имеет различные знаки, т.е. f(a)f(b) , то между точками a и b имеется хотя бы один корень уравнения (1). Если при этом знак функции f'(x) на отрезке [a,b] не меняется, то корень является единственным на этом отрезке.

Процесс определения корней алгебраических и трансцендентных уравнений состоит из 2 этапов:

  1. отделение корней, — т.е. определение интервалов изоляции [a,b] , внутри которого лежит каждый корень уравнения;
  2. уточнение корней, — т.е. сужение интервала [a,b] до величины равной заданной степени точности .

Для алгебраических и трансцендентных уравнений пригодны одни и те же методы уточнения приближенных значений действительных корней:

Аналитические методы отделения корней

Цель работы

Целью работы является изучение численных методов решения алгебраических и трансцендентных уравнений. В настоящей работе рассматриваются следующие методы нахождения корней уравнения :

· — Метод деления отрезка пополам.

· — Метод касательных (Метод Ньютона).

Примеры заданий

Найти корни уравнений :

1. x 2 — 0.5 + sin(x) =0;

2. 2 * sin(x) — x 2 + 0.3 * x = 0;

3. 0.1 * sin(x) + x 3 — 1 = 0;

4. 0.1 * x 2 — x * Ln(x) = 0;

5. 0.1 * x 3 — 2 * x 2 + x — 5 = 0;

6. x 3 — 0.39 * x 2 — 10.5 * x + 11 = 0;

8. 2.5 — 3 * sin(x + Pi / 4) = 0 ;

9. abs(x) + cos(x + Pi / 8) — 2.5 = 0.

Найти минимальный положительный корень :

10. sin(x) = P — q * x, 0 0;

13. Ln(x) = P — q * x 2 , P,q > 0.

Теоретические сведения

Пусть уравнение имеет вид f(x) = 0. Функция f(x) определена в некотором конечном или бесконечном интервале a

6.3.4 Метод деления отрезка пополам

Дана функция f(x) непрерывная на отрезке a,b и удовлетворяющая условию f(a) * f(b) k .

При k ® , lim(bk — ak) ® 0. Следовательно, при k ® , lim ak = lim bk = x*, где символом обозначена бесконечность.

Процесс деления отрезка прекращается при условии, что

Противоположная граница будет неподвижной (точка d). Вычисления корня прекращаются при условии, что


источники:

http://intuit.ru/studies/courses/2260/156/lecture/27239

http://poisk-ru.ru/s39521t3.html