Отделить корни уравнения методом половинного деления

Метод половинного деления (метод дихотомии или метод бисекции)

Теорема 2. Итерационный процесс половинного деления сходится к искомому корню ξ с любой наперед заданной точностью ε.
Доказательство: Рассмотрим последовательность чисел ξi являющихся приближением корня на i -ом шаге.
ξi=½(bi+ai), i=0,1.
где a0=a; b0=b; ai;bi — границы подынтервалов, в которых f(ai)f(bi) 0 мы ни задали, всегда можно найти такое n , что ч.т.д.
Графически метод дихотомии выглядит следующим образом

|f(c)|≤δ f(a)f(c) 10 = 1024 ≈ 10 3 раз. За 20 итераций (n=2) уменьшается в 2 20 ≈ 10 6 раз.

Пример №1 . Найти экстремум функции: y=5x 2 -4x+1 методом дихотомии, если ε=0.1, а исходный интервал [0,10].

  • Решение
  • Видео решение

Пример №3 . Методом бисекции найти решение нелинейного уравнения на отрезке [a,b] с точностью ε = 10 -2 . Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε = 10 -4 . Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.
sqrt(t)+x 2 = 10, a = 2.6, b = 3

Найдем корни уравнения:
Используем для этого Метод половинного деления (метод дихотомии)..
Считаем, что отделение корней произведено и на интервале [a,b] расположен один корень, который необходимо уточнить с погрешностью ε.
Итак, имеем f(a)f(b) 1 /2(a+b) и вычисляем f(c). Проверяем следующие условия:
1. Если |f(c)| 1 /2 n (b-a)
В качестве корня ξ. возьмем 1 /2(an+bn). Тогда погрешность определения корня будет равна (bn – an)/2. Если выполняется условие:
(bn – an)/2 1 /2(an+bn).
Решение.
Поскольку F(2.6)*F(3) 0, то a=2.8
Итерация 2.
Находим середину отрезка: c = (2.8 + 3)/2 = 2.9
F(x) = 0.113
F(c) = -0.487
Поскольку F(c)•F(x) 0, то a=2.825
Остальные расчеты сведем в таблицу.

Ncabf(c)f(x)
12.632.8-1.6275-0.4867
22.832.9-0.48670.1129
32.82.92.850.1129-0.1893
42.82.852.825-0.1893-0.3386
52.8252.852.8375-0.3386-0.2641
62.83752.852.8438-0.2641-0.2267

Ответ: x = 2.8438; F(x) = -0.2267
Решение было получено и оформлено с помощью сервиса Метод Ньютона онлайн

Пример №2 . Локализовать корень нелинейного уравнения f(x) = 0 и найти его методом бисекции с точностью ε1 = 0,01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε2 = 0,0001. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности ε2 число итераций.

Метод половинного деления. Один из методов уточнения корней уравнения (1) – метод половинного деления

Один из методов уточнения корней уравнения (1) – метод половинного деления. Исходные данные: уравнение f(x)=0; отрезок [a,b], на котором существует единственный корень уравнения (корень отделен), т.е. f(x) удовлетворяет условиям: f(x) непрерывна на [a,b], монотонна нем и f(a)f(b) 0 (знаки функции f(x) в точках a и c одинаковы), то левый конец отрезка заменяется на середину (а=с) иначе правый конец заменяется на середину (b=c).

4. Если длина отрезка не превосходит заданной точности (b-a 4 -x 3 -2x 2 +3x-3=0.

Полагая f(x)= x 4 -x 3 -2x 2 +3x-3, имеем f’(x)=4x 3 -3x 2 -4x+3.

Найдем нули производной: 4x 3 -3x 2 -4x+3=0; 4x(x 2 -1)-3(x 2 -1)=0;(x 2 -1)(4x-3)=0;

Составим таблицу знаков функции f(x):

x-∞-13/4+∞
f(x)++

Из таблицы видно, что уравнение имеет два действительных корня x1 (-∞;-1) и x2 (1;+ ∞). Уменьшим промежутки, на которых находятся корни, до единичной длины:

x-2-1
f(x)++

Следовательно, x1 (-2;-1) и x2 (1;2).

Уточним один из корней, например, x1, методом половинного деления до сотых долей. Все вычисления удобно производить, используя следующую таблицу:

Второй корень, уточняемый аналогичным образом, равен 1,73.

2. Отделить корни графически и уточнить их методом половинного деления.

Перепишем уравнение в виде . Обозначим , и построим графики этих функций:

Из рисунка видно, что уравнение имеет три корня: точный x=0 и еще два, расположенных симметрично на отрезках [-3;-2] и [2;3].

Уточним корень на отрезке [2;3]:

Задания

1)Отделить корни аналитически и уточнить их методом половинного деления до 0,01, используя электронные таблицы.

1. 3x 4 +4x 3 -12x 2 -5=0

2. 2x 3 -9x 2 -60x+1=0

5. 3x 4 +3x 3 +6x 2 -10=0

7. x 4 +4x 3 -3x 2 -17=0

8. x 4 -x 3 -2x 2 +3x-3=0

9. 3x 4 +4x 3 -12x 2 +1=0

10. 3x 4 -8x 3 -18x 2 +2=0

11. 2x 4 -3x 3 +8x 2 -1=0

12. 2x 4 +8x 3 +3x 2 -1=0

13. x 4 -4x 3 -8x 2 +1=0

14. 3x 4 +4x 3 -12x 2 -5=0

15. 2x 3 -8x 2 -30x+1=0

17. 2x 4 -2x 2 -7=0

18. 3x 4 +8x 3 +6x 2 -10=0

19. x 4 -18x 2 +6=0

20. x 4 +4x 3 -3x-7=0

21. x 4 -2x 3 -x 2 +3x-3=0

22. 3x 4 +4x 3 -3x 2 -17=0

23. 2x 4 -5x 3 -12x 2 +2=0

24. 3x 4 +9x 3 -14x 2 +1=0

25. x 4 +2x 3 -x-1=0

26. x 4 +8x 3 -6x 2 -72x=0

28. x 4 -3x 2 +75x-10000=0

2) Отделить корни графически и уточнить их методом половинного деления до 0.01, используя электронные таблицы.

Лабораторная работа №3

Решение нелинейных уравнений методом хорд

Краткая теория

Будем рассматривать уравнения вида f(x)=0 (1). Пусть корень уравнения отделен и находится на отрезке [a,b]. Уточним этот корень методом хорд. Геометрически метод хорд означает замену на отрезке [a,b] графика функции y=f(x) хордой, проведенной через точки (a,f(a)) и (b,f(b)):

Здесь ξ — точный корень уравнения (1), ­­x — начальное приближение к корню, x -точка пересечения хорды с осью Ох – первое приближение к корню. Далее метод хорд применяется на отрезке [a, x ] и получается второе приближение к корню — x . В случае, изображенном на рис.1, конец отрезка а остается неподвижным. Из уравнения хорды и условия, что точка (x ,0) принадлежит хорде, получается формула для вычисления n-го приближения к корню для случая, когда а – неподвижный конец: x =b,

x =a- (2)

Для случая неподвижного конца b используется формула: x =a,

x =x (3)

Правило определения неподвижного конца хорды:

Если знаки первой и второй производных функции f(x) на отрезке [a, b] совпадают, то неподвижным являются конец b, иначе — конец a.

Метод хорд обеспечивает на n-м шаге абсолютную погрешность приближения к корню уравнения (1), не превосходящую длину n-го отрезка:

1. Определить, какой конец отрезка будет неподвижным и принять за x другой конец отрезка.

2. Вычислить новое приближение к корню x по формуле (2) или (3).

3. Если длина отрезка [x , x ] не превосходит заданной точности, то процесс заканчивается и в качестве точного корня можно взять x или x , иначе идти к п.2

Решение одного варианта

1.Отделить корни графически и уточнить их методом хорд с точностью до 0.001: tg(0.5x+0.1)=x .

Отделим корень графически. Построим графики функций

y =tg(0.5x+0.1) и y =x :

Таким образом, уравнение имеет два корня

x [0.5; 1] и x [-0.5; 0]

Чтобы уточнить этот корень методом хорд, определим знаки первой и второй производной функции f(x)= tg(0.5x+0.1)-x на промежутке [0.5;1]. Имеем

f ‘(x)=0.5/cos (0.5x+0.1)-2x;

3. ­­­

6.

7.

8.

9.

10.

11.

12.

13. x lgx — 1.2 = 0

14. 1.8x 2 – sin10x = 0

15. ctgx – x / 4 = 0

16. tg(0.3x + 0.4) = x 2

17. x – 20sinx = 0

18. ctgx – x / 3 = 0

19. tg(0.47x + 0.2) = x 2

20. x 2 + 4sinx = 0

21. ctgx – x / 2 = 0

22. 2x – lgx – 7 = 0

24. 3x – cosx – 1 = 0

26. 10cosx-0,1x 2 =0

2)Отделить корни аналитически и уточнить их методом хорд до 0.001:

Метод бисекции

Метод бисекции или метод деления отрезка пополам — простейший численный метод приближённого нахождения корня уравнения.

Калькулятор, который находит приближенное решение уравнения методом бисекции или методом деления отрезка пополам. Небольшая теория под калькулятором.

Метод бисекции

Метод бисекции

Существует довольно очевидная теорема: «Если непрерывная функция на концах некоторого интервала имеет значения разных знаков, то внутри этого интервала у нее есть корень (как минимум, один, но может быть и несколько)». На базе этой теоремы построено несколько методов численного нахождения приближенного значения корня функции. Обобщенно все эти методы называются методами дихотомии, т. е. методами деления отрезка на две части (необязательно равные).

Здесь уже были рассмотрены Метод хорд и Метод секущих, теперь дошла очередь и до самого простого метода дихотомии, называемого методом бисекции, или методом деления отрезка пополам. Как следует из названия, именно в этом методе отрезок делится каждый раз на две равные части. Середина отрезка считается следующим приближением значения корня. Вычисляется значение функции в этой точке, и, если критерий останова не достигнут, выбирается новый интервал. Интервал выбирается таким образом, чтобы на его концах значения функции по прежнему имели разный знак, то есть чтобы он по прежнему содержал корень. Такой подход обеспечивает гарантированную сходимость метода независимо от сложности функции — и это весьма важное свойство. Недостатком метода является то же самое — метод никогда не сойдется быстрее, т. е. сходимость метода всегда равна сходимости в наихудшем случае.

Итерационная формула проста:

Метод бисекции является двухшаговым, то есть новое приближение определяется двумя предыдущими итерациями. Поэтому необходимо задавать два начальных приближения корня.
Метод требует, чтобы начальные точки были выбраны по разные стороны от корня (то есть корень содержался в выбранном интервале).

В качестве критерия останова берут один из следующих:

— значение функции на данной итерации стало меньше заданого ε.

— изменение хk в результате итерации стало меньше заданого ε. Поскольку интервал на каждом шаге уменьшается в два раза, вместо проверки x можно рассчитать количество требуемых итераций.


источники:

http://megaobuchalka.ru/11/35984.html

http://planetcalc.ru/3718/