Параметрическое уравнение прямой через 2 точки в пространстве

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

x+y= 1
ab

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1=y — y 1
x 2 — x 1y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >— координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0
lm

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1=y — y 1=z — z 1
x 2 — x 1y 2 — y 1z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0=z — z 0
lmn

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Параметрическое уравнение прямой проходящей через две точки: онлайн-калькулятор

Параметрическое уравнение прямой можно легко составить с помощью онлайн-калькулятора. Просто выберите размерность (плоскость или трехмерное пространство), укажите координаты точек и нажмите «рассчитать». Онлайн-калькулятор выдаст подробное пошаговое решение.

Как найти параметрическое уравнение прямой, проходящей через две точки, с помощью онлайн-калькулятора

Рассмотрим пример, наглядно демонстрирующий работу с онлайн-калькулятором. Найдем параметрическое уравнение прямой, проходящей через точки с координатами (1;4) и (3;0). Для этого:

  1. Укажем размерность. Калькулятор позволяет работать с объектами на плоскости (2), или в пространстве (3). В нашем конкретном примере выберем плоскость (2):
  2. Зададим прямую по двум точкам. Для этого впишем координаты этих точек в пустые поля калькулятора:
  3. Нажмем «Рассчитать» и получим ответ с решением:

Материалы, которые помогут вам лучше разобраться в теме:

Параметрическое уравнение прямой онлайн

Параметрическое уравнение прямой представляет собой систему из двух или трех уравнений. Чтобы задать прямую на плоскости или в пространстве параметрически, достаточно знать координаты двух точек, через которые эта прямая проходит. Онлайн-калькулятор позволяет найти параметрическое уравнение прямой в один клик, минуя все расчеты.

Интерфейс онлайн-калькулятора устроен максимально понятно и просто: вы можете не только получить ответ, но и разобраться с ходом решения примера, так как программа выдает все математические выкладки с подробным пояснением.

Данный сервис будет полезен студентам, школьникам, преподавателям, а также всем людям, интересующимся математикой.

Уравнение прямой проходящей через две точки

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.


источники:

http://zaochnik.com/online-calculators/tochka-pryamaya-ploskost/parametricheskoe-uravnenie-pryamoj-prohodyashej-cherez-dve-tochki/

http://mnogoformul.ru/uravnenie-pryamoj-po-dvum-tochkam