Параметры уравнение имеет единственное решение

Уравнения с параметром

Разделы: Математика

Справочный материал

Уравнение вида f(x; a) = 0 называется уравнением с переменной х и параметром а.

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х, удовлетворяющие этому уравнению.

Если 1 – а = 0, т.е. а = 1, то х0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х.

если а = 5, то х = = ;

Дидактический материал

3. а = +

4. + 3(х+1)

5. =

6. =

Ответы:

  1. При а1 х =;
  1. При а3 х = ;
  1. При а1, а-1, а0 х = ;

при а = 1 х – любое действительное число, кроме х = 1

  1. При а2, а0 х = ;
  1. При а-3, а-2, а0, 5 х =
  1. При а + с0, с0 х = ;

Квадратные уравнения с параметром

Пример 1. Решить уравнение

х = –

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

a =

a =

Если а -4/5 и а 1, то Д > 0,

х =

х = – = –

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

В итоге4(а – 1)(а – 6) > 0
— 2(а + 1) 0
а 6
а > — 1
а > 5/9

6

Пример 3. Найдите значения а, при которых данное уравнение имеет решение.

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а(а – 4) 0

а(а – 4)) 0

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3аа 2 ) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + ха = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

Показательные уравнения с параметром

Пример 1.Найти все значения а, при которых уравнение

9 х – (а + 2)*3 х-1/х +2а*3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х , получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у, тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log32 , или х 2 – хlog32 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 32 – 4 х+1/х = а то х + 1/х = log3а, или х 2 – хlog3а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 32 – 4 > 0, или |log3а| > 2.

Если log3а > 2, то а > 9, а если log3а 9.

Пример 2. При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х1 = -3, х2 = а = >

а – положительное число.

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х — (5а-3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Ответ:

  1. 0 25/2
  2. при а = 1, а = -2,2
  3. 0 0, х1/4 (3)

х = у

Если а = 0, то –2у + 1 = 0
2у = 1
у = 1/2
х = 1/2
х = 1/4

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.

Если Д = 0 (а = 1), то (4) имеет единственный положительный корень х = 1, удовлетворяющий условиям (3).

Пусть Д > 0 (а 0 уравнение (4) имеет действительные корни разных знаков. Это условие выполняется тогда и только тогда, когда Д > 0 и 1/а х

Выражая х из (1) и подставляя в (2), получаем неравенство

2 – а > 1 – а (3)

Чтобы решить неравенство (3), построим графики функций у = 2 – а и у = 1 – а.

Решения неравенства (3) образуют промежуток (а0; 2), где а0 2

а0 =

Ответ: x + 9a 3 ) = x имеет ровно два корня.

  • Найдите, при каких значениях а уравнение log 2 (4 x – a) = x имеет единственный корень.
  • При каких значениях а уравнение х – log 3 (2а – 9 х ) = 0 не имеет корней.
  • Ответы:

      при а 16.06.2009

    Что такое параметр? Простые задачи с параметрами

    Одна из сложных задач Профильного ЕГЭ по математике — задача с параметрами. В ЕГЭ 2022 года это №17. И даже в вариантах ОГЭ они есть. Что же означает это слово — параметр?

    Толковый словарь (в который полезно время от времени заглядывать) дает ответ: «Параметр — это величина, характеризующая какое-нибудь основное свойство устройства, системы, явления или процесса».

    Хорошо, параметр — это какая-либо характеристика, свойство системы или процесса.

    Вот, например, ракета выводит космический аппарат в околоземное пространство. Как вы думаете — какие параметры влияют на его полет?

    Если корабль запустить с первой космической скоростью, приближенно равной 7,9 км/с, он выйдет на круговую орбиту.

    Вторая космическая скорость, приближенно равная 11,2 км/с, позволяет космическому кораблю преодолеть поле тяжести Земли. Третья космическая скорость, приближенно равная 16,7 км/с, дает возможность преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы.

    А если скорость меньше первой космической? Значит, тонны металла, топлива и дорогостоящей аппаратуры рухнут на землю, сопровождаемые репликой растерянного комментатора: «Кажется, что-то пошло не так».

    Скорость космического корабля можно — параметр, от которого зависит его дальнейшая траектория и судьба. Конечно, это не единственный параметр. В реальных задачах науки и техники, задействованы уравнения, включающие функции многих переменных и параметров, а также производные этих функций.

    1. Теперь пример из школьной математики.

    Все мы помним, что такое квадратное уравнение. Это уравнение вида , где коэффициент а не равен нулю.

    Количество корней квадратного уравнения зависит от знака выражения, которое называется дискриминант.

    Дискриминант квадратного уравнения:

    Если , квадратное уравнение имеет два корня: и

    Если , квадратное уравнение имеет единственный корень

    Если , квадратное уравнение не имеет действительных корней. Рассмотрим уравнение . Его дискриминант равен Если , то есть , это квадратное уравнение имеет два корня.

    Если при , уравнение имеет единственный корень.

    Если , то есть с > 1, корней нет.

    В нашем уравнении с — параметр, величина, которая принимать любые значения. Но от этого параметра с зависит количество корней данного уравнения.

    Для того чтобы уверенно решать задачи с параметрами, необходимо отличное знание и алгебры, и планиметрии.

    И еще две простые задачи с параметром.

    2. Найдите значение параметра p, при котором уравнение имеет 2 различных корня.

    Квадратное уравнение имеет два различных корня, когда .

    Найдем дискриминант уравнения

    Т.к. , получим:

    Вспомним, как решаются квадратичные неравенства (вы проходили это в 9 классе).

    Найдем корни квадратного уравнения . Это и

    Разложим левую часть неравенства на множители:

    Рисуем параболу с ветвями вверх. Она пересекает ось р в точках и

    3. При каких значениях параметра k система уравнений не имеет решений?

    Оба уравнения системы — линейные. График линейного уравнения — прямая. Запишем уравнения системы в привычном для нас виде, выразив у через х:

    Первое уравнение задает прямую с угловым коэффициентом . Второе уравнение — прямую с угловым коэффициентом -2.

    Система уравнений не имеет решений, если эти прямые не пересекаются, то есть параллельны. Это значит, что и .

    Действительно, в этом случае первое уравнение задает прямую , а второе — параллельную ей прямую

    Симметрия в задачах с параметром

    Существует множество задач с параметром, в которых задание ставится следующим образом: «Найдите все значения параметра, при которых уравнение имеет единственное решение». Главным словом здесь будет «единственное». Стоит обратить внимание, что в таких задачах очень часто уравнение не меняется при замене знака одной или нескольких переменных, или при перестановке переменных местами. Этим необходимо пользоваться. Разберем на примерах:

    Найдите все значения параметра \(b\), при которых уравнение \(-4x^2+b*cos⁡(sin⁡x )-2b^2\)=0 имеет единственное решение.

    Пусть \(_<0>\) корень исходного уравнения, тогда, замечаем, что корнем будет и \(<-x>_<0>\). Чтобы решение было единственным необходимо \(_<0>=<-x>_<0>\). Данное условие будет выполняться только при условии, что \(_<0>=0.\)

    Итак, при \(x=0\) наше уравнение принимает вид \(b-2b^2=0\) ⇔ \(b=0;\) \(b=2;\) Мы нашли значения параметра, при которых у нас возможно единственное решение. Но еще нужно проверить, а будет ли при этих значениях параметра решение единственным. Просто подставим в исходное уравнение.

    При \(b=0\) получаем: \(-4x^2=0\) ⇔ \(x=0\) – решение единственное.

    $$ -4x^2+2 cos⁡(sin⁡x )-8= 0,$$ $$ 4x^2+8=2cos⁡(sin(x)).$$

    Левая часть данного уравнения больше 8, а так как область значения \(cos(x ∈[-1;1])\), то максимальное значение правой части равно 2. Получившееся уравнение не будет иметь корней. При \(b=2\) корней нет.

    Найдите все значения параметра \(a\), при которых система

    имеет единственное решение.

    Заметим интересную особенность:

    Наша система симметрична относительно переменной \(y\). А значит, если \((_<0>;_<0>)\) – решение системы, то и \((_<0>;<-y>_<0>)\) также будет решением. Решение будет единственным при условии, что \(_<0>=<-y>_<0>\) ⇔ \(_<0>=0\). Подставим y=0 в исходную систему:

    Решив систему, найдем значения параметра \(a\):

    Проверим каждое значение параметра, подставив в условие задачи.

    При \(a=-1\) наша исходная система имеет вид:

    Попробуем оценить первое уравнение. Напомним, что сумма двух взаимно обратных величин всегда больше равна 2: \((3-2\sqrt<2>)^y+(3+2\sqrt<2>)^y≥2. \)

    \(x^2+6x+2≤2\), при \(-6≤x≤0\). (см. рис. 20)


    источники:

    http://ege-study.ru/chto-takoe-parametr-prostye-zadachi-s-parametrami/

    http://sigma-center.ru/symmetry_parametr