Паули реакция на белки уравнение реакции

ЦВЕТНЫЕ И ИМЕННЫЕ КАЧЕСТВЕННЫЕ РЕАКЦИИ НА БЕЛКИ

История химии в школьном курсе

Белки – основа жизнедеятельности любого организма на Земле. Это сложные высокомолекулярные природные соединения. Мономерами белков являются аминокислоты. Умение определять аминокислоты важно и в теоретическом, и в практическом аспекте. Определение аминокислот сопровождается написанием уравнений качественных реакций, что способствует углублению знаний по органической химии. Это умение имеет большое значение при заболеваниях, связанных с ослаблением иммунной системы людей (аллергические заболевания, нарушение функционирования ферментативных систем и т. д.), при которых основную роль играют белки. В данной ситуации необходимо оперативно и грамотно определять аминокислоты (белки).

Мы постарались в этой работе выяснить химизм качественных реакций на аминокислоты, указать роль отдельных ученых, в том числе российских, в исследовании белков, а также:

1) изучить и систематизировать имеющиеся литературные данные по качественным реакциям на белковые аминокислоты, составить базу данных о качественных, в том числе цветных, реакциях на белки;
2) научиться практически осуществлять качественные реакции;
3) выделить качественные реакции на белковые аминокислоты, изучаемые в школьном курсе химии.

Для аминокислот, постоянно встречающихся в составе белков, разработано множество цветных (в том числе именных) реакций. Многие из них высокоспецифичны, что позволяет определять ничтожные количества той или иной аминокислоты.

Надо помнить, что все качественные реакции – это реакции не собственно на белки, а на определенные аминокислоты, входящие в их состав.

Основной структурной единицей белков служат a -аминокислоты. В состав большинства природных белков входит около 20 a -аминокислот.

Общая формула белковых a -аминокислот:

Основным источником a -аминокислот для живого организма являются пищевые белки. Некоторые белковые аминокислоты синтезируются и самим организмом. Их называют заменимыми аминокислотами. Другие a -аминокислоты, необходимые для синтеза белков, синтезироваться в организме не могут и должны поступать только извне. Такие аминокислоты называют незаменимыми.

Все a -аминокислоты, входящие в состав белков, за исключением глицина (аминоуксусная кислота), содержат один или два асимметрических атома углерода и являются оптически активными соединениями. Они существуют в виде пар зеркальных изомеров (энантиомеры, или оптические антиподы), различающихся положением аминогруппы у асимметрического (хирального) атома углерода (он обозначен звездочкой). Расположение аминогруппы справа в проекционной формуле Фишера соответствует D-конфигурации, ее расположение слева – L-конфигурации:

Большинство D-изомеров обладает сладким вкусом, а L-изомеры – горькие или безвкусные.

В состав природных белков входят только L-аминокислоты. a -Аминокислоты D-ряда называют иногда неприродными, т. к. они не используются для построения белков человеческого организма.

a -Аминокислоты представляют собой кристаллические вещества, растворимые в воде, имеющие сравнительно высокую температуру плавления (200–300 °С). Способность a -аминокислот растворяться в воде является важным фактором в обеспечении их биологического функционирования. С нею связана всасываемость a -аминокислот, их транспорт в организме.

Такие аминокислоты имеют две ионизируемые группы: карбоксильную (–СООН) и аминогруппу (–NН2). В твердом состоянии и в водных растворах при определенных значениях рН среды a -аминокислоты существуют в виде биполярных ионов (цвиттер-ионы), представляющих собой внутреннюю соль. В биполярном ионе карбоксильная группа диссоциирована (–СОО – ) , а аминогруппа протонирована Ионизация молекул a -аминокислот зависит от рН раствора:

a -Аминокислоты содержат две различные функциональные группы: амино- и карбоксильную группы. Следовательно, это гетерофункциональные соединения.

Аминогруппа обусловливает основные свойства вещества, а карбоксильная – кислотные, именно поэтому a -аминокислоты являются амфотерными соединениями, т. е. образуют соли как с кислотами, так и со щелочами:

Кроме того, a -аминокислоты могут вступать в другие химические реакции, характерные для амино- и карбоксильных групп.

  • Реакция Адамкевича (Адамкевича–Гопкинса (1874))

Описание опыта. К 2 мл 1%-го раствора триптофана приливают

1 мл концентрированной уксусной кислоты, встряхивают и по стенке пробирки осторожно добавляют

2 мл концентрированной серной кислоты. На границе двух жидкостей наблюдают образование красно-фиолетового окрашивания. При встряхивании жидкость окрашивается в фиолетовый цвет.

  • Реакция Ван Слайка

Это реакция определения первичной аминогруппы в алифатических аминах.
a -Аминокислоты, содержащие первичную аминогруппу, реагируют с азотистой кислотой. При этом образуется неустойчивое диазосоединение, разлагающееся с выделением свободного азота и образованием a -гидроксикарбоновых кислот:

Реакция используется для количественного определения аминокислот по объему выделившегося газообразного азота.

Описание опыта. В пробирку наливают 1 мл 1%-го раствора глицина и равный объем 5%-го раствора нитрита натрия. Добавляют 0,5 мл концентрированной уксусной кислоты и осторожно взбалтывают смесь. Наблюдается выделение пузырьков газа:

  • Реакция Вуазена

Описание опыта. Если к 1 мл 5%-го раствора белка в 30%-м растворе едкого калия прибавить одну каплю 1,25%-го раствора формальдегида, 10 мл концентрированной соляной кислоты и через 10 минут прибавить 5–7 капель 0,05%-го раствора нитрита натрия, то появляется фиолетовое окрашивание, обусловленное присутствием в белке триптофана.

  • РЕАКЦИЯ МИЛЛОНА

Это реакция на аминокислоту тирозин. Реактив Миллона (раствор HgNO3 и Hg(NO2)2 в разбавленной HNO3, содержащей примесь HNO2) взаимодействует с тирозином с образованием ртутной соли нитропроизводного тирозина, окрашенной в розовато-красный цвет:

Описание опыта. К 2 мл концентрированного раствора тирозина прибавляют

1 мл реактива Миллона, встряхивают и осторожно нагревают пробирки на пламени спиртовки. Образуется красное окрашивание.

  • Реакция Гопкинса–Коле

Это реакция на аминокислоту триптофан.

Описание опыта. 1 мл 0,005%-го раствора триптофана смешивают с равным объемом глиоксиловой кислоты НС(О)СООН* и к смеси прибавляют 10 капель 0,04 М раствора сульфата меди(II). Затем небольшими порциями (по несколько капель) добавляют 2–3 мл концентрированной серной кислоты, охлаждая пробирку после приливания очередной порции кислоты током холодной воды (или в ванночке со льдом). Полученную смесь оставляют на 10 мин при комнатной температуре, после чего ставят на 5 мин в кипящую водяную баню. Наблюдается образование сине-фиолетового окрашивания.

В этой реакции из глиоксиловой кислоты под действием концентрированной серной кислоты сначала получается формальдегид:

который затем конденсируется с триптофаном:

Продукт конденсации окисляется до бис-2-триптофанилкарбинола, который в присутствии минеральных кислот образует соли, окрашенные в сине-фиолетовый цвет:

  • Реакция Мак-карти и салливана

Это реакция на аминокислоту метионин.

Описание опыта. К 5 мл 0,02 н. раствора метионина прибавляют при перемешивании сначала 1 мл 14,3 н. раствора гидроксида натрия, а затем 0,3 мл свежеприготовленного 10%-го раствора нитропруссида натрия. Смесь 10 мин нагревают на водяной бане при 35–40 °С, затем в течение 2 мин охлаждают в ледяной воде. К смеси добавляют при помешивании 5 мл смеси соляной и фосфорной кислот. Полученный раствор взбалтывают 1 мин и охлаждают водой комнатной температуры в течение 10 мин. Образуется яркая красно-фиолетовая окраска.

  • Реакция Паули (Диазореакция Паули)

Эта реакция на аминокислоту гистидин основана на взаимодействии гистидина с диазобензолсульфоновой кислотой с образованием соединения вишнево-красного цвета.

Реакцию диазотирования осуществляют при взаимодействии кислого раствора сульфаниловой кислоты с нитритом натрия. При этом образуется диазобензолсульфоновая кислота:

Эта кислота, взаимодействуя с гистидином, дает соединение вишнево-красного цвета:

Описание опыта. В пробирку наливают 1 мл 1%-го раствора сульфаниловой кислоты в 5%-м растворе соляной кислоты. Затем прибавляют 2 мл 0,5%-го раствора нитрита натрия, сильно встряхивают и немедленно приливают 2 мл 0,01%-го раствора гистидина. После перемешивания содержимого пробирки сразу приливают 6 мл 10%-го раствора соды. Появляется интенсивная вишнево-красная окраска.

Окончание следует

*К 2 г порошка магния (слегка увлажненного) прилить при охлаждении 50 мл (заранее охлажденного до 0 °С) насыщенного раствора щавелевой кислоты. Полученный осадок оксалата магния отфильтровывают и декантируют небольшим количеством воды. Фильтрат подкисляют уксусной кислотой и доводят до объема 200 мл (полученный раствор хранить в холодильнике!).

Цветные реакции

КАЧЕСТВЕННЫЕ РЕАКЦИИ НА АМИНОКИСЛОТЫ И БЕЛКИ

Цель работы:изучить качественные реакции, используемые для обнаружения белков и определения их аминокислотного состава

Цветные реакции

Для обнаружения белка применяют цветные реакции, которые делят на два типа: общие или универсальные и специфические. К универсальным реакциям относятся биуретовая (на пептидную связь) и нингидрировая (на α-аминокислоты). С их помощью можно обнаружить любой белок. К специфическим относятся реакции на отдельные аминокислоты, которые позволяют обнаружить специфические функциональные группы в составе радикалов аминокислот.Цветные реакции на белки лежат в основе методов установления белковой природы веществ, изучения аминокислотного состава и количественного содержания белков.

Работа 1. Биуретовая реакция (реакция Пиотровского).

В щелочной среде белки, а также продукты их гидролиза (полипептиды) дают фиолетовое или красно-фиолетовое окрашивание с сульфатом меди. Реакция обусловлена присутствием в балках пептидных связей, которые образуют окрашенные солеобразные комплексные соединения. Интенсивность окраски зависит от количества пептидных связей в молекуле и количества медной соли.

Свое название реакция получила от производного мочевины – биурета, который дает эту реакцию. Биурет образуется при нагревания мочевины с отщеплением от нее аммиака:

Две молекулы диенольной формы биурета взаимодействуют с образующимся в щелочной среде гидроксидом меди (II). Продуктом реакции является комплексное соединение (окрашенная медно-натриевая соль биурета), в котором координационные связи образованы за счет электронных пар атомов азота иминных групп:

Подобным образом построены окрашенные медно-натриевые соли пептидов и белков.

Биуретовую реакцию дает также аспарагин (амид аспарагиновой кислоты) и аминокислоты гистидин, серии, треонин.

Ход работы. В одну пробирку наливают 10-12 капель раствора яичного или растительного белка, в другую насыпают 20-30 мг мочевины и нагревают на спиртовке до исчезновения запаха аммиака и охлаждают. В обе пробирки добавляют по 10 капель 10-процентного раствора гидроксида натрия и по 1-2 капли 1-процентного раствора сульфата меди (II). В обеих пробирках появляется сине-фиолетовое или красно-фиолетовое окрашивание.

Работа 2. Нингидриновая реакция.

Белки, полипептиды и аминокислоты при нагревании с нингидрином дают синее и сине-фиолетовое окрашивание. Нингидриноваяреакция обусловлена наличием α-аминокислот и является одной из наиболее чувствительных для обнаружения α-аминогрупп.

Сущность реакции заключается в том, что α-аминокислоты и пептиды, реагируя с нингидрином, подвергаются окислительному дезаминированию и декарбоксилированию:

Восстановленный нингидрин взаимодействует с аммиаком и второй молекулой нингидрина, в результате чего образуется сложное окрашенное соединение мурексидного строения:

Ход работы. В две пробирки наливают: в одну 10 капель раствора яичного или растительного белка, в другую 10 капель 0,1-процентного раствора глицина. В каждую из них добавляют по 2-3 капли 0,1-процентного раствора нингидрина и нагревают. Через 1-2 мин появляется розовое, затем красное, а затем синее окрашивание.

Работа 3. Ксантопротеиновая реакция (реакция Мульдера)

При нагревании растворов большинства белков с концентрированной азотной кислотой образуется желтое окрашивание, переходящее в щелочном растворе в оранжевое.

Реакция обусловлена присутствием циклических аминокислот, которые при взаимодействии с азотной кислотой образуют нитропроизводные желтого цвета, например:

Продукты нитрования циклических аминокислот, реагируя с едким натром или гидроксидом аммония, образуют соответствующие соли, имеющие оранжевую окраску:

Ход работы. В пробирку наливают 8-10 капель яичного или растительного белка, добавляют З-5 капель концентрированной азотной кислоты и нагревают. В пробирке появляется желтое окрашивание. После охлаждения к смеси добавляют избыток концентрированного раствора аммиака или 30-процентного раствора гидроксида натрия. Желтая окраска переходит в оранжевую.

Работа 4. Реакция на тирозин (реакция Миллона)

Нагревание большинства белков с реактивом Миллона (раствор нитратов и нитритов ртути (I) и (II) в азотной кислоте) приводит к образованию красного осадка.

Реакция обусловлена присутствием в белке аминокислоты тирозина, которая при взаимодействии с реактивом Миллона дает нитрозопроизводное, ртутное соединение которого окрашено в красный цвет:

Ход работы.К 8-10 каплям раствора белка добавляют 2-3 капли реактиваМиллона и осторожно нагревают. Жидкость окрашивается в красный цвет и выпадает красно-коричневый осадок.

Работа 5. Диазореакция на гистидин и тирозин (реакция Паули)

При добавлении к щелочному раствору белка диазореактива жидкость приобретает оранжево-красное окрашивание.

Реакция обусловлена присутствием в белке аминокислот гистидина и тирозина, которые, реагируя с диазобензолсульфокислотой,образуют азокраситель красного цвета:

Ход работы.К свежеприготовленномудиазореактиву (3 капли 1-процентного раствора сульфаниловой кислоты в 2-процентном растворе соляной кислоты и 3 капли 5-процентного раствора нитрита натрия) добавляют 6-8 капель раствора белка и после перемешивания 3-5 капель 10-процентного раствора карбоната натрия. Развивается интенсивная красная окраска.

Работа 6. Реакции на триптофан

Реакции основаны на способности триптофана в кислой среде вступать во взаимодействие с альдегидами, образуя при этом окрашенные продукты конденсации.

а) Реакция Адамкевича. Взаимодействие триптофана с глиоксиловой кислотой (которая всегда присутствует в ледяной уксусной кислоте) приводит к образованию соединения красно-фиолетового цвета:

Ход работы. К 5-6 каплям раствора белка добавить 5 капель концентрированной уксусной кислоты, слегка подогреть и подслоить (осторожно. по стенке наклоненной пробирки) равный объем концентрированной серной кислота. На границе двух слоев жидкости появляется красно-фиолетовое кольцо.

б) Реакция Шульца-Распайля. Триптофан, взаимодействуя с оксиметилфурфуролом (образующимся при гидролизе сахарозы и обезвоживании моносахаридов под действием концентрированной серной кислоты) образует комплекс вишнево-красного цвета.

Ход работы.К 5-6 каплям раствора белка приливают 1 каплю 10- процентного раствора сахарозы и подслаивают 1 мл концентрированной серной кислоты. На границе раздела жидкостей появляется вишнево-красное окрашивание.

Работа 7. Реакция Фоля на содержащие серу аминокислоты

Нагревание белка со щелочью и плюмбитом приводит к появлению бурого или черного осадка. Реакция обусловлена наличием в белке содержащих серу аминокислот, которые под действием щелочи разрушаются с образованием сульфида щелочного металла; последний с плюмбитом дает осадок сульфида свинца:

Ход работы.К 5-6 каплям раствора белка добавляют 10 капель 30-процентного раствора гидроксида натрия и 1каплю 5-процентного раствора ацетата свинца. При длительном нагревании выпадает черный осадок сульфида свинца.

Лабораторная работа №1

Лабораторная работа №1

ХИМИЯ ПРОСТЫХ БЕЛКОВ.

ЦВЕТНЫЕ РЕАКЦИИ НА БЕЛКИ И АМИНОКИСЛОТЫ

Белки представляют собой высокомолекулярные полимерные органические соединения, построенные из остатков различных α-аминокислот, соединенных ковалентной пептидной связью.

Присутствие белка в растворах можно обнаружить с помощью цветных реакций, обусловленных наличием в белке аминокислот, их специфических групп и пептидных связей. Существуют универсальные цветные реакции, т. е. на все белки (биуретовая и нингидриновая), и специфические, т. е. на определенные аминокислоты (ксантопротеиновая, Миллона, Фоля и др.).

На основании некоторых цветных реакций разработаны методы количественного определения белков и аминокислот, которые широко используются в биохимических лабораториях.

Цель: Ознакомиться с универсальными цветными реакциями на белки и специфическими реакциями на отдельные аминокислоты, содержащиеся в белковых растворах.

Работа 1. Биуретовая реакция на пептидную связь (Пиотровского)

Биуретовая реакция обусловлена наличием в белке пептидных связей, которые в щелочной среде образуют с сернокислой медью комплексы фиолетового цвета с красным или синим оттенком. Группа, образующая пептидную связь, в щелочной среде присутствует в своей таутомерной енольной форме:

При избытке щелочи происходит диссоциация ОН-группы, появляется отрицательный заряд, с помощью которого кислород взаимодействует с медью. Возникает солеобразная связь. Кроме того, медь образует дополнительные координационные связи с атомами азота, участвующими в пептидной связи, путем использования их электронных пар. Возникающий таким образом комплекс очень стабилен. Интенсивность окраски комплекса зависит от концентрации белка и количества медной соли в растворе.

Биуретовой реакцией обнаруживаются все без исключения белки, а также продукты их неполного гидролиза – пептоны и полипептиды. Для ди — и трипептидов биуретовая реакция ненадежна. Оттенок зависит от длины полипептидной цепочки. Пептоны при этой реакции дают розовое или красное окрашивание. Биуретовая реакция положительна и с веществами небелкового характера, имеющими в составе не менее двух – CO – NH2-групп, к ним относятся, например, оксамид – NH2 – CO – CO – NH2, биурет – N2H – CO – NH – CO – NH2.

Исследуемый материал: раствор яичного белка, раствор растительного белка, 1% раствор желатина.

Реактивы: 10% раствор NaOH, 1% раствор CuSO4.

Оборудование: пробирки, капельницы.

Ход работы. К 5 каплям водного раствора белка добавляют 5 капель 10% раствора NaOH и 2 капли 1% раствора CuSO4. Содержимое перемешивают. Оно приобретает сине-фиолетовый цвет. Нельзя добавлять избыток CuSO4, так как синий осадок маскирует характерное фиолетовое окрашивание биуретового комплекса.

Работа 2. Нингидриновая реакция на α-аминокислоты

Белки, полипептиды и свободные α-аминокислоты дают синее или фиолетовое окрашивание с нингидрином. При нагревании белка с водным раствором нингидрина аминокислоты окисляются и распадаются, образуя СО2, NH3 и соответствующий альдегид. Нингидрин, являясь сильным окислителем, вызывает окислительное дезаминирование α-аминокислоты, приводящее к образованию аммиака, двуокиси углерода, соответствующего альдегида и восстановленной формы нингидрина. Нингидрин восстанавливается и связывается со второй молекулой нингидрина посредством молекулы аммиака, образуя продукты конденсации, окрашенные в синий, фиолетовый, красный, а в случае пролина – в желтый цвет.


источники:

http://mydocx.ru/3-56503.html

http://pandia.ru/text/80/187/38426.php