Перейти к полярным координатам в дифференциальном уравнении

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Математический анализ
  • Замена переменных в дифференциальных выражениях.

Замена переменных в дифференциальных выражениях.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Часто в дифференциальных выражениях входящие в них производные по одним переменным необходимо выразить через производные по новым переменным.

Примеры.

7.165. Преобразовать уравнение $$x^4\frac+2x^3\frac-y=0,$$ полагая $x=\frac<1>.$

Решение.

Подставим найденные значения производных и выражение $x=\frac<1>$ в заданное уравнение.

Ответ: $\frac-y=0.$

7.167. Преобразовать уравнение $$3\left(\frac\right)^2-\frac\frac-\frac\left(\frac\right)^2=0,$$ приняв $y$ за аргумент.

Решение.

Выразим производные от $y$ по $x$ через производные от $x$ по $y:$ $$\frac=\frac<1><\frac>,$$

Подставим полученные выражения производных в заданное уравнение. Получаем

Таким образом, получили ответ.

7.168. Преобразовать уравнение $$(xy’-y)^2=2xy(1+y’^2),$$ перейдя к полярным координатам.

Решение.

$$dx=\cos\varphi dr-r\sin\varphi d\varphi,\qquad dy=\sin\varphi dr+r\cos\varphi d\varphi,$$

$$r^4 d\varphi^2=r^2\sin2\varphi dr^2+r^4\sin 2\varphi d\varphi^2\Rightarrow$$

$$\sin2\varphi dr^2=(1-\sin 2\varphi)r^2 d\varphi^2 \Rightarrow\left(\frac\right)^2=\frac<1-\sin 2\varphi> <\sin 2\varphi>r^2\Rightarrow$$

7.170. Преобразовать уравнение $$(x+y)\frac<\partial z><\partial x>-(x-y)\frac<\partial z><\partial y>=0,$$ перейдя к новым независимым переменным $u$ и $v,$ если $u=\ln\sqrt,\,\, v=arctg\frac.$

Решение.

Выразим частные производные от $z$ по $x$ и $y$ через частные производные от $z$ по $u$ и $v.$

Подставим найденные выражения производных в заданное уравнение:

7.174. Преобразовать уравнение $$(xy+z)\frac<\partial z><\partial x>+(1-y^2)\frac<\partial z><\partial y>=x+yz,$$ приняв за новые независимые переменные $u=yz-x,\,\, v=xz-y$ и за новую функцию $w=xy-z.$

Решение.

$$ ydx+xdy-dz =\frac<\partial w><\partial u>\cdot \left(-dx+zdy+ydz\right) +\frac<\partial w><\partial v>\cdot \left(zdx+xdz-dy \right)\Rightarrow$$

Подставим найденные выражения $\frac<\partial z><\partial x>$ и

$\frac<\partial z><\partial y>$ в заданное уравнение. Получим

Замена переменных

Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.

В уравнении \(\displaystyle x^2+\frac+x\frac+y=0\) сделать замену независимой переменной \(x=e^t\).

\(\triangle\) Если \(z(t) = y(e^t)\), то, применяя правило нахождения производной сложной функции, получаем
$$
\frac=e^t\frac=x\frac,\nonumber
$$
откуда \(\displaystyle \frac=x\frac\).

Заметим, что уравнение \(\displaystyle \frac+z=0\) является уравнением гармонических колебаний, а его решением является \(z=C_<1>\sin t + C_2\cos t\). Поэтому при \(x > 0\) решение исходного уравнения имеет следующий вид: \(y= C_1 \sin (\ln x) + C_2\cos (\ln x)\). Так как уравнение не изменяет своего вида при замене \(x\) на \(-x\), то при любом \(x\in R, \ x\neq 0\), решение имеет следующий вид:
$$
y(x)=C_1\sin(\ln |x|) + C_2\cos(\ln |x|).\qquad\blacktriangle\nonumber
$$

В системе уравнений:
$$
\left\<\begin\displaystyle\frac=y-2kx(x^2+y^2),\\\displaystyle\frac=-x-2kx(x^2+y^2),\\\displaystyle k > 0,\end\right.\nonumber
$$
перейти к полярным координатам.

\(\triangle\) Умножим первое уравнение на \(x\), второе на \(y\) и сложим. Аналогично умножим первое уравнение на \(y\) и вычтем из него второе уравнение, умноженное на \(x\). Получим новую систему уравнений, при \(x^2+y^2 > 0\) эквивалентную исходной системе уравнений,
$$
\left\<\begin\displaystyle x\frac+y\frac=-2k(x^2+y^2)^2,\\\displaystyle y\frac-x\frac=y^2+x^2.\end\right.\label
$$

Но \(x^2+y^2=r^2\), \(x=r\cos\varphi\), \(y=r\sin\varphi\). Поэтому систему \eqref можно записать в виде:
$$
\left\<\begin\displaystyle r\frac=-2kr^4,\\\displaystyle\frac=1.\end\right.\Longleftrightarrow\left\<\begin\displaystyle\frac=-2kr^3,\\\displaystyle\frac=1.\end\right.\label
$$

Заметим, что система \eqref легко решается. Получаем решение в виде:
$$
r=\frac<1><\sqrt>,\quad \varphi=\varphi_0+t\quad (-t_0 Пример 3.

Преобразовать уравнение \(y’y»’-3(y»)^2=x\), принимая \(y\) за независимую переменную, а \(x\) — за неизвестную функцию.

Таким образом, при \(y’\neq 0\) уравнение преобразуется к виду \(x»’+x(x’)^5=0\). Это частный случай уравнения общего вида \(x»’=\Phi(y,x,x’,x»)\) с непрерывно дифференцируемой в \(R^4\) функцией \(\Phi(y,u,v,w)\). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. \(\blacktriangle\)

Преобразовать выражение \(\omega=\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>\) к полярным координатам, полагая \(x=r\cos\varphi, \ y=r\sin\varphi\). Найти решение уравнения Лапласа \(\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>=0\), зависящее только от полярного радиуса \(r\).

Пусть \(u=v(r)\) есть решение уравнения Лапласа, зависящее только от \(r\). Тогда функция \(v(r)\) должна быть решением дифференциального уравнения
$$
\frac<\partial^2v><\partial r>+\frac1r\frac<\partial v><\partial r>=0\quad\Longleftrightarrow\quad\frac\left(r\frac\right)=0\nonumber
$$
$$
r\frac=C,\quad\Longrightarrow\quad v=C_1\ln r+C_2,\label
$$
где \(C_1\) и \(C_2\) — произвольные постоянные. \(\blacktriangle\)

Сделать в уравнении колебаний струны
$$
\frac<\partial^2u><\partial t^2>-a^2\frac<\partial^2u><\partial x^2>=0,\quad a > 0,\quad -\infty Решение.

Решение уравнения \(\displaystyle\frac<\partial^2\omega><\partial\xi\partial\eta>=0\) легко находится. Так как \(\displaystyle\frac\partial<\partial\xi>\left(\frac<\partial\omega><\partial\eta>\right)=0\), то \(\displaystyle\frac<\partial\omega><\partial\eta>=\varphi(\eta)\), где \(\varphi(\eta)\) — произвольная непрерывная функция \(\eta\).

Пусть \(\Phi(\eta)\) есть ее первообразная на \(R\). Тогда, интегрируя уравнение \(\omega_<\eta>=\varphi(\eta)\), получаем, что \(\omega=\Phi(\eta)+\Psi(\xi)\), где \(\Psi(\xi)\) — произвольная функция.

Если считать, что функции \(\Phi(\eta)\) и \(\Psi(\xi)\) есть непрерывно дифференцируемые функции, то общее решение уравнения \eqref имеет следующий вид:
$$
u(x,t)=\Psi(x-at)+\Phi(x+at).\quad\blacktriangle\nonumber
$$

Замена переменных

Очень часто в выражениях, содержащих производные, приходится переходить к новым переменным.

Внимание!
Если необходимо выполнить замену переменных в дифференциальном выражении, I в Maple в пакете PDEtools есть процедура dchange(). Первым параметром этой процедуры указывают равенство (или множество, состоящее из равенств), определяющее переход от старых переменных к новым, а вторым параметром — выражение, в котором следует выполнить эту замену. Кроме того, может использоваться ряд опций, информация о которых есть в справочной системе Maple. Ниже приведен пример использования процедуры dchange().

Сначала подключаем пакет.

Новая переменная вводится согласно соотношению х =ехр(/)

После упрощения получаем следующее

Замену переменных можно выполнить и в том случае, если переменных несколько. Рассмотрим выражение

В этом выражении перейдем к новым переменным и и v согласно соотношениям х = uv и у = (и1 -v2)/2 , и после упрощения получим следующее.

Процедура dchange() полезна во многих случаях. Однако желательно уметь обходиться и без нее. Рассмотрим, как без специальных команд приведения выражений к новым переменным выполнить подобные замены.

Преобразовать к полярным координатам уравнение у'(х) =x+y/x-y

Опишем процедуру, посредством которой в дальнейшем будет осуществляться переход к новым координатам. Параметрами процедуры будут новая переменная t, новая функция u(t) и две функции f и g, посредством которых выполняется переход от старых переменной и функции к новым.

Тело процедуры состоит из одного выражения, определяющего производную от старой функции по старой переменной в терминах новой функции и новой переменной.

Определим функции перехода от декартовой системы координат к полярной.

Теперь запишем декартовы координаты через полярные (это понадобится в дальнейшем).

Новая процедура позволяет выразить производную в полярных координатах.

Исходное уравнение будет записано следующим образом.

Поскольку предварительно декартовы координаты были выражены через полярные, правая часть равенства будет представлена тоже в полярной системе координат.

В полученном уравнении выделим производную. Для этого решим уравнение относительно этой производной.

Таким образом, можем записать окончательный результат.

В последней команде левая часть уравнения нужна для формального отображения символа производной. Однако следует иметь в виду, что вычислительным ядром Maple левая часть уравнения как производная не интерпретируется. Чтобы равенство можно было в дальнейшем трактовать как дифференциальное уравнение, следует воспользоваться процедурой Diff().

Перейти к новым переменным и , v, w в уравнении

В отличие от предьщущего случая, здесь выражение содержит частные производные, а функции (старая и новая) являются функциями двух переменных.

Определим уравнение, которое следует преобразовать.

Теперь у процедуры три параметра-функции, определяющие правила перехода от старых переменных и функции к новым.

В соответствии с правилами перехода к новым переменным, определяем юцедуру, аргументами которой выступают законы перехода F, G и Н к новым параметрам u, v и w.

Уравнения Eql i1 E(J2 связывают старые производные с новыми. Система этих уравнений решает относительно производных от функции z (команда solve()). мее задаем закон61 перехода от старых переменных и функции к новым.

Переменной S присваиваем в качестве значения результат выполнения процедуры преобразования производных. > S:=VarChange(F,G,H,u,v,w);

После этого в уравнении Eq производные от z по х и у, а также сами пере-Гменные и функцию следует выразить через новые параметры. Выполняется такая замена с помощью процедуры subs().

На заметку
Ссылки rhs (S [ 1 ]) и rhs (S [ 2 ]) возвращают выражения для частных производных функции z — это правые части первого и второго равенств, являющихся элементами множества S.

Полученное таким образом уравнение умножим на знаменатель правой части (знаменатель возвращается процедурой denom<)).

После упрощения имеем следующее.

Это уравнение, в частности, можно сократить на экспоненту.

Если уравнение сократить еще на один общий множитель, получим окончательный ответ.

Разумеется, сокращение совсем не обязательно было выполнять «в два этапа», но так нагляднее.


источники:

http://univerlib.com/mathematical_analysis/functions_several_variables/variable_change/

http://www.maple9.ru/ma02/Index9.htm