Плоские электромагнитные волны уравнения плоской электромагнитной волны

2.6. Электромагнитные волны

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0):

Величины и — электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле.

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

Электромагнитная волна — это распространяющееся в пространстве электромагнитное поле, в котором напряженность электрического и индукция магнитного полей изменяются по периодическому закону.

При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов и .

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) — это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где — введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где vфазовая скорость света в среде:

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot, применяемую к некоторому векторному полю А можно символически записать как детерминант:

Подставляя сюда выражения (2.99), зависящие только от координаты x, находим:

Дифференцирование плоских волн по времени дает:

Тогда из уравнений Максвелла следует:

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Далее, ни у , ни у нет компонент параллельных оси х:

Иными словами и в изотропной среде,

электромагнитные волны поперечны: колебания векторов электрического и магнитного полей происходят в плоскости, ортогональной направлению распространения волны.

Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):

Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Отсюда следует, что вектор направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба — направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

а также связь амплитуд колебаний полей:

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих — в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.

Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Наблюдатель в другой инерциальной системе отсчета К’, движущейся относительно первой со скоростью V вдоль оси x, также наблюдает эту волну, но пользуется другими координатами и временем: t’, r’. Связь между системами отсчета дается преобразованиями Лоренца:

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

Это выражение можно записать как

где и — циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Для электромагнитной волны в вакууме

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Это и есть формула Доплера для электромагнитных волн.

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

При скоростях V 2 (солнечная постоянная). Найдем среднюю амплитуду колебаний E0 вектора электрической напряженности в солнечном излучении. Вычислим амплитуды колебаний напряженности магнитного поля H0 и вектора магнитной индукции B0 в волне.

Ответ находим сразу из уравнений (3.127), где полагаем :

Электромагнитные волны поглощаются и отражаются телами, следовательно, они должны оказывать на тела давление. Рассмотрим плоскую электромагнитную волну, падающую нормально на плоскую проводящую поверхность. В этом случае электрическое поле волны возбуждает в теле ток, пропорциональный Е. Магнитное поле волны по закону Ампера будет действовать на ток с силой, направление которой совпадает с направлением распространения волны. В 1899 г. в исключительно тонких экспериментах П.И. Лебедев доказал существование светового давления. Можно показать, что волна, несущая энергию W, обладает и импульсом:

Пусть электромагнитная волна падает в вакууме по нормали на площадь А и полностью поглощается ею. Предположим, что за время площадка получила от волны энергию . Тогда переданный площадке импульс равен

На площадку действует со стороны волны сила

Давление Р, оказываемое волной, равно

Если средняя плотность энергии в волне равна , то на площадь А за время попадет энергия из объема и

Отсюда находим давление электромагнитной волны (света):

Если площадка идеально отражает всю падающую на нее энергию, то давление будет в два раза большим, что объясняется очень просто: одинаковый вклад в давление в этом случае дают как падающая, так и отраженная волны, в случае полностью поглощающей поверхности отраженной волны просто нет.

Пример 3. Найдем давление Р солнечного света на Землю. Используем значение солнечной постоянной из предыдущего примера. Искомое давление равно:

Пример 4. Найдем давление Р лазерного пучка на поглощающую мишень. Выходная мощность лазера N = 4.6 Вт, диаметр пучка d = 2.6 мм.

Бегущие электромагнитные волны

Бегущие волны – это волны, которые переносят энергию в пространстве. Количественно транспортирование энергии этой волной назначает вектор плотности потока энергии, называемый вектором Умова-Пойтинга. Его направление совпадает с направлением распространения энергии. Модуль вектора равняется энергии, которую может переносить волна за время, равное 1 с , через площадку, располагаемую перпендикулярно к направлению ее движения с площадью, равняющуюся 1 .

Уравнение плоской бегущей волны

Для получения уравнения бегущей волны рассматривается плоская гармоническая. Считается, что она распространяется по О х . Поверхности волны перпендикулярны О х , все точки волновой поверхности совершают колебания одинаково, смещение ξ = ξ ( x , t ) будет функцией с координатой x и временем t . Запись уравнение колебаний частиц, находящихся на плоскости х , примет вид:

ξ ( x , t ) = A cos ω t — x υ ( 1 ) .

Отсюда ξ ( x , t ) является периодической по времени и по координате х . уравнение ( 1 ) называют уравнением бегущей волны. Если плоская волна задается при помощи выражения ( 1 ) , то ее перемещение идет по О х . При обратном ее направлении по О х уравнение запишется как:

ξ ( x , t ) = A cos ω t + x υ ( 2 ) .

Если волна движется по О х без поглощения энергии, то это характеризуется уравнением:

ξ ( x , t ) = A cos ω t — x υ + φ 0 ( 3 ) .

Значение A = c o n s t относят к амплитуде, ω – к циклической частоте волны, φ 0 — к начальной фазе колебаний, определяемой выбором началом отсчета x и t , ω t — x υ + φ 0 – к фазе плоской волны.

Что называют электромагнитной волной. Волновое число

Электромагнитные волны – это распространяющиеся в пространстве изменения состояния электромагнитного поля. Они характеризуются волновым числом k .

Запись выражения ( 1 ) примет совершенно другой вид при известном волновом числе.

Если перейти к комплексным числам, применив формулу Эйлера, уравнение плоской волны зафиксируем.

Выражение ( 6 ) имеет физический смысл только в действительной части, но R e возможно опустить в записи уравнения волны.

Перейдем к рассмотрению волнового процесса, где не происходит изменение фазы.

Далее найдем дифференциал от выражения ( 7 ) .

При условии, что υ волны зависит от частоты колебаний, то такая волна подвержена дисперсии.

Уравнение сферической бегущей волны

Сферическая волна – это волна, волновая поверхность которой является концентрической сферой. Такое уравнение примет вид:

ξ ( r , t ) = A 0 r cos ω t — k r + φ 0 ( 11 ) ,

где r является расстоянием от центра волны до точки рассмотрения. Если имеем дело со сферической волной, то ее амплитуда колебаний не будет постоянной даже при условии, что энергия не поглощается средой. Ее убывание происходит обратно пропорционально расстоянию. Выполнение уравнения ( 8 ) возможно тогда, когда источник волн считается точечным.

Уравнение бегущей волны в любом виде подчинено волновому уравнению.

Дана плоская электромагнитная волна в вакууме, которая распространяется по О х . Амплитуда напряженности электрического поля равняется E m . Определить амплитуду напряженности магнитного поля заданной волны.

За основу необходимо принять выражение для амплитуд электромагнитной волны:

ε ε 0 E = μ μ 0 H ( 1 . 1 ) .

Запись уравнения колебаний модуля E → в электромагнитной волне при условии, что она является плоской и идет по О х , фиксируем:

E = E m cos ω t — k x ( 1 . 2 ) .

Для записи уравнения колебаний H → в электромагнитной волне, в случае если она считается плоской и распространяется по О х :

H = H m cos ω t — k x ( 1 . 3 ) .

Из условия имеем, что волна производит рассеивание в вакууме, то ε = 1 , μ = 1 . Применяя ( 1 . 1 ) , ( 1 . 2 ) , ( 1 . 3 ) :

ε 0 E m = μ 0 H m → H m = ε 0 μ 0 E m .

Ответ: H m = ε 0 μ 0 E m .

Распространение электромагнитной плоской волны идет в вакууме по О х . Ее падение производится перпендикулярно поверхности тела, которое способно полностью поглощать волну. Значение амплитуды напряженности магнитного поля равняется
H m . Определить давление волны на тело.

Необходимо учитывать, что тело, которое поглощает падающую на него энергию, оказывается под давлением, равным среднему значению объемной плотности энергии в электромагнитной волне.

Следует применять соотношение амплитуд электромагнитной волны, которое записывается:

ε ε 0 E = μ μ 0 H .

Для того, чтобы зафиксировать уравнение колебаний E при распространении волны по О х , получим:

E = E m cos ω t — k x .

Теперь перейдем к уравнению колебаний H , если рассеивание плоской волны идет соответственно направлению О х . Запишем:

H = H m cos ω t — k x .

Следует, что значение объемной плотности электрической энергии примет вид:

ω E = ε ε 0 E 2 2 .

Формула плотности магнитного поля:

ω H = μ μ 0 H 2 2 .

Причем ω E = ω H . Запись примет вид:

ω = ω E + ω H = 2 ω H = μ μ 0 H 2 = μ μ 0 H m 2 cos 2 ω t — k x .

После усреднения плотности, имеем:

» open=» ω = » open=» μ μ 0 H m 2 cos 2 ω t — k x .

При » open=» cos 2 ω t — k x = 1 2 получаем:

p = » open=» ω = μ μ 0 H m 2 2 .

Ответ: p = » open=» ω = μ μ 0 H m 2 2 .

Плоские электромагнитные волны и их свойства

Английский физик Джеймс Клерк Максвелл в 1864 г. впервые получил уравнения, описывающие динамику новой формы материи – электромагнитного поля. Теория электромагнитного поля Максвелла основана на следующих положениях.

1. Всякое изменение магнитного поля создает в окружающем пространстве вихревое электрическое поле (рис. 1.1а). Линии напряженности вихревого электрического поля расположены в плоскости, перпендикулярной линиям индукции переменного магнитного поля, и охватывают их; они образуют с вектором «левый винт» (их направление соответствует правилу Ленца).

2. Всякое изменение электрического поля возбуждает в окружающем пространстве вихревое магнитное поле, линии индукции которого расположены в плоскости, перпендикулярной линиям напряженности переменного электрического поля, и охватывают их (рис. 1.1б). Линии индукции возникающего магнитного поля образуют с вектором «правый винт».

Переменные электрическое и магнитное поля могут существовать в пространстве в отрыве от зарядов и токов проводимости как единое электромагнитное поле. В природе электрические и магнитные явления выступают как две стороны единого процесса. Деление электромагнитного поля на электрическое и магнитное зависит от выбора системы отсчета. Действительно, вокруг зарядов, покоящихся в одной системе отсчета, существует только электрическое поле; однако эти же заряды будут двигаться относительно другой системы отсчета и порождать в этой системе отсчета, кроме электрического, еще и магнитное поле. Таким образом, теория Максвелла связала воедино электрические и магнитные явления.

Если возбудить с помощью колеблющихся зарядов переменное электрическое или магнитное поле, то в окружающем пространстве возникает последовательность взаимных превращений электрических и магнитных полей, распространяющихся от точки к точке. Оба эти поля являются вихревыми, причем векторы и расположены во взаимно перпендикулярных плоскостях. Процесс распространения электромагнитного поля схематически показан на рис. 1.2. Этот процесс, являющийся периодическим во времени и пространстве, представляет собой электромагнитную волну.

Максвелл показал, что скорость электромагнитных волн в вакууме

,

где e0 и m0 – электрическая и магнитная постоянные, e0 = 8,85 · 10 –12 Ф/м, m0 = 4p · 10 7 Гн/м. Эта скорость совпадает со скоростью света в вакууме. На этом основании Максвелл выдвинул смелое предположение, что световая волна – это лишь разновидность электромагнитных волн.

Основные свойства электромагнитных волн, распространяющихся в пустом пространстве, можно получить, исходя из фундаментальных законов электромагнитной теории Максвелла. Наибольшей простотой отличаются плоские монохроматические волны. Плоская монохроматическая волна – это идеализация. Несмотря на ограниченную применимость такой идеализированной модели, она во многих случаях полезна для описания реальных волн.

В плоских монохроматических волнах зависимость векторов и от координат и времени имеет один и тот же вид и описывается гармонической функцией:

.

Волновой вектор определяет направление распространения поверхности постоянной фазы (волновой поверхности). Его модуль , где – фазовая скорость волны.

Непосредственно из теории Максвелла следует:

1. Векторы и перпендикулярны направлению распространения волны (вектору ).

2. Векторы и ортогональны друг другу ( ^ ) и образуют с вектором правую тройку векторов. Таким образом, плоские электромагнитные волны являются поперечными.

3. В электромагнитной волне модули векторов и связаны между собой . Это соотношение выполняется в любой точке пространства в любой момент времени.

Пусть плоская электромагнитная волна распространяется в положительном направлении оси z, вектор направлен по оси у, тогда вектор направлен по оси x.

Уравнение этой волны запишется так:

.

Рис. 1.3
Рис. 1.4

На рис. 1.3 дан «моментальный снимок» такой волны. Из рисунка видно, что колебания электрического вектора происходят вдоль оси у, колебания магнитного вектора – вдоль оси x, а волна распространяется вдоль оси z со скоростью . В фиксированной точке пространства векторы изменяются со временем по гармоническому закону, причем эти изменения происходят в одной фазе, то есть они достигают максимума и обращаются в нуль в одних и тех же точках. При этом если вектор направлен в положительную сторону вдоль оси y, то вектор направлен в отрицательную сторону вдоль оси x.

Если направление распространения волны изменится на противоположное, то уравнение волны примет вид:

.

«Моментальный снимок» такой волны приведен на рис. 1.4. Расстояние между двумя ближайшими точками, колеблющимися в одинаковых фазах, есть длина волны l.

Полеты управляемых космических аппаратов на далекие расстояния к планетам Солнечной системы продемонстрировали, что скорость распространения электромагнитных волн велика, но не бесконечна; она составляет 300 000 км/с. Например, команды, передаваемые в виде радиоволн космическим аппаратам, находящимся на Луне, приходят туда с запаздыванием по времени примерно на 1 с.

Мы выяснили, что в электромагнитной волне колеблются две векторные величины: и . Как показывает опыт, физическое, фотохимическое и другие действия света вызываются колебаниями электрического вектора. Поэтому в дальнейшем, говоря о световой волне, мы чаще будем говорить только о векторе напряженности электрического поля.

Опыт Герца

Рис. 1.5

Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано в опытах Г. Герца в 1887 г., через восемь лет после смерти Максвелла. Для получения электромагнитных волн Герц применил прибор, состоящий из двух стержней, разделенных искровым промежутком (вибратор Герца). При определенной разности потенциалов в промежутке между ними возникала искра – высокочастотный разряд, возбуждались колебания тока и излучалась электромагнитная волна. Для приема волн Герц применил резонатор – прямоугольный контур с промежутком, на концах которого укреплены небольшие медные шарики (рис. 1.5).

Генрих Герц родился 22 февраля 1857 г. в Гамбурге в семье адвоката. Уже в юности у него появились склонности к разным ремеслам – он выучился столярному делу, умел работать на токарных станках. В восемнадцать лет, получив аттестат зрелости, он поехал в Мюнхенский политехнический институт. После двух лет занятий Герц обнаружил, что гораздо больше его привлекает научная работа в области физики. Он перешел в Берлинский университет, где продолжил изучение математики и физики. Прилежного студента заметил известный профессор Герман фон Гельмгольц и пригласил его в свою лабораторию в качестве практиканта. Позже он доверил ему самостоятельную задачу, за решение которой в 1879 г. Герц получил золотую медаль университета. В 1883 г. он стал приват-доцентом в Нильском университете, а спустя два года был назначен штатным профессором физики в политехническом институте г. Карлсруэ. Здесь он проводил свои исследования электромагнитных волн, которые принесли ему всемирную известность. Опыты Герца имели большое значение для признания теории Максвелла и ее утверждения. Генрих Герц умер 1 января 1894 г. в Бонне. Ему не исполнилось еще и 37 лет.

Александр Степанович Попов (1859–1906) родился 16 марта 1859 г. на Урале (поселок Турьинские Рудники) в семье небогатого священника. С малых лет у Александра пробудился интерес к технике. В семинарии он умудряется все свободное время отдавать изучению естественных наук, за что получает от своих товарищей прозвище «математик». Закончив обучение в духовной семинарии, Попов отказывается от карьеры священника и, сдав вступительные экзамены, становится в 1977 г. студентом физико-математического факультета Петербургского университета.

7 мая 1895 г. произошло событие, сыгравшее исключительную роль в развитии всей человеческой цивилизации. В этот день А.С. Попов на заседании Русского физико-химического общества в Петербурге продемонстрировал первый в мире радиоприемник, который принимал знаки азбуки Морзе без помощи проводов. В начале 1897 г. Попов уже осуществил радиопередачи между Кронштадтским берегом и кораблем на расстояние 640 метров. В 1899 г. он со своим ближайшим помощником Петром Николаевичем Рыбкиным осуществил радиоприем дальностью 50 километров.

В 1908 г., уже после его смерти (он умер 13 января 1906 г.), было установлено, что «А.С. Попов по справедливости должен быть признан изобретателем телеграфа без проводов при помощи электрических волн».

В своих опытах Герц не только экспериментально доказал существование электромагнитных волн, но и изучил все явления, типичные для любых волн: отражение от металлических поверхностей, преломление в большой призме из диэлектрика, интерференцию бегущей волны с отраженной от металлического зеркала и т.п. На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света в вакууме. Эти результаты являются одним из веских доказательств правильности электромагнитной теории Максвелла, согласно которой свет представляет собой электромагнитную волну.

Вибратор Герца имел длину от 2,5 м до 1 м, что соответствовало волнам длиной от 5 до 2 м, то есть полученные Герцем волны в миллион раз превосходили по длине световые волны.

В 1895 г. П.Н. Лебедев, пользуясь миниатюрными вибраторами, получил электромагнитные волны длиной около 2–6 мм. Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после Герца электромагнитные волны нашли применение в беспроволочной связи. Показательно, что русский изобретатель радиоАлександр Степанович Попов в своей первой радиограмме в 1896 г. передал два слова: «Генрих Герц».


источники:

http://zaochnik.com/spravochnik/fizika/volnovaja-optika/beguschie-elektromagnitnye-volny/

http://poisk-ru.ru/s64862t1.html