Плоскость различные уравнения плоскости условие перпендикулярности плоскостей

Глава 32. Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей

Один из углов f между плоскостями A1x + B1y + C1z + D1 = 0 и
A2x +B2y + C2z + D2 = 0 (рис. 2.18.1) равен углу между их нормальными векторами и и определяется по формуле:

Найти угол между плоскостями x – y + 21/2z + 2 = 0 и x + y +21/2z – 3 = 0.

Условие параллельности плоскостей

Две плоскости параллельны тогда и только тогда, когда их нормальные векторы и коллинеарны, следовательно, их координаты пропорциональны, т. е.

Определить, параллельны ли плоскости 2x–3y–4z+11=0 и –4x+6y+8z+36=0.

Плоскости параллельны, так как

Условие перпендикулярности плоскостей

Если две плоскости заданы уравнениями A1x1 + B1y1 + C1z1 + D = 0, A2x2 + B2y2 + C2z2 + D = 0, то условием их перпендикулярности является

A1A2 + B1B2 + C1C2 = 0.

Если плоскости перпендикулярны, то перпендикулярны и их нормальные векторы N1 и N2.

Определить перпендикулярны ли плоскости 3x–2y–2z+7=0 и 2x+2y+z+4=0.

Так как 3×2+(–2)×2+(–2) ×1=0, то заданные плоскости перпендикулярны.

Плоскость, проходящая через данную точку параллельно данной плоскости

Плоскость, проходящая через точку M1(x1;y1;z1) и параллельная плоскости Ax+By+Cz+D=0, представляется уравнением

A(x–x1) + B(y–y1) + C(z–z1) = 0.

Написать уравнение плоскости, проходящей через точку (2;–1;6) параллельно плоскости x+y–2z+5=0.

(x–2) + (y+1) –2(z–6) = 0, т. е. x + y – 2z + 11 = 0.

Плоскость, проходящая через две точки перпендикулярно к данной плоскости

Плоскость P, проходящая через две точки M0(x0,y0,z0) и M1(x1,y1,z1) перпендикулярно к плоскости Q, заданной уравнением Ax+By+Cz+D=0, представляется уравнением

Написать уравнение плоскости, проходящей через две точки: M0(1;2;3) и M1(2;1;1) перпендикулярно к плоскости 3x+4y+z–6=0.

Плоскость представляется уравнением:

т. е. x–y+z–2=0.

Расстояние от точки до плоскости

Расстояние от точки M1(x1;y1;z1) до плоскости Ax+By+Cz+D=0 равно

Найти расстояние от точки (3;9;1) до плоскости x–2y+2z–3=0.

Перпендикулярные плоскости, условие перпендикулярности плоскостей.

Эта статья о перпендикулярных плоскостях. Сначала дано определение перпендикулярных плоскостей, показаны обозначения и приведены примеры. После этого сформулирован признак перпендикулярности плоскостей и условие перпендикулярности двух плоскостей. В заключении детально разобраны решения характерных задач.

Навигация по странице.

Перпендикулярные плоскости – основные сведения.

Определение перпендикулярных плоскостей дается через угол между пересекающимися плоскостями.

Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен девяноста градусам.

Для обозначения перпендикулярности используют символ вида «». То есть, если плоскости и перпендикулярны, то можно кратко записать .

Если плоскости и перпендикулярны, то можно также сказать, что плоскость перпендикулярна к плоскости или плоскость перпендикулярна к плоскости . Поэтому перпендикулярные плоскости и часто называют взаимно перпендикулярными.

В качестве примера перпендикулярных плоскостей можно привести плоскости стены и пола в комнате.

Перпендикулярность плоскостей – признак и условие перпендикулярности.

На практике часто приходится определять, перпендикулярны ли две заданные плоскости. Для этого можно найти угол между заданными плоскостями, и если он будет равен , то по определению плоскости будут перпендикулярными.

Также существует признак перпендикулярности двух плоскостей, который часто используется для доказательства перпендикулярности двух плоскостей. В его формулировке участвуют перпендикулярные прямая и плоскость. Сформулируем признак перпендикулярности двух плоскостей в виде теоремы.

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны.

Доказательство признака перпендикулярности двух плоскостей Вы можете посмотреть в учебнике по геометрии за 10 — 11 классы.

Из этого признака напрямую следует, что если плоскость перпендикулярна к линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.

Теперь рассмотрим необходимое и достаточное условие перпендикулярности двух плоскостей, которое удобно применять для проверки перпендикулярности плоскостей, заданных в прямоугольной системе координат в трехмерном пространстве. Определение нормального вектора плоскости позволяет доказать следующее необходимое и достаточное условие перпендикулярности двух плоскостей.

Для перпендикулярности двух пересекающихся плоскостей необходимо и достаточно, чтобы нормальные векторы этих плоскостей были перпендикулярны.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат. Если и — нормальные векторы плоскостей и соответственно, то необходимое и достаточное условие перпендикулярности векторов и имеет вид . Таким образом, если и — нормальные векторы плоскостей и соответственно, то для перпендикулярности плоскостей и необходимо и достаточно, чтобы скалярное произведение векторов и равнялось нулю, то есть, чтобы выполнялось равенство .

Разберем решения нескольких примеров.

Перпендикулярны ли плоскости, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и ?

Чтобы ответить на вопрос о перпендикулярности заданных плоскостей, найдем координаты нормальных векторов этих плоскостей и проверим выполнение условия перпендикулярности этих векторв.

Общее уравнение плоскости позволяет сразу записать координаты нормального вектора: .

Чтобы определить координаты нормального вектора плоскости , перейдем от уравнения плоскости в отрезках к общему уравнению плоскости: . Таким образом, — нормальный вектор плоскости .

Вычислим скалярное произведение векторов и : . Так как оно отлично от нуля, то векторы и не перпендикулярны, следовательно, заданные плоскости не перпендикулярны.

нет, плоскости не перпендикулярны.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы координаты четырех точек . Проверьте перпендикулярность плоскостей АВС и ABD .

Убедимся, что скалярное произведение нормальных векторов указанных плоскостей равно нулю – это будет доказательством перпендикулярности плоскостей. Для этого сначала нам нужно найти координаты нормальных векторов и плоскостей АВС и ABD соответственно.

По известным координатам точек А , В , С и D мы можем вычислить координаты векторов , и (при необходимости смотрите статью вычисление координат вектора по координатам точек его конца и начала): .

Нормальным вектором плоскости АВС является векторное произведение векторов и , а нормальным вектором плоскости ABD является векторное произведение векторов и , то есть,

Находим скалярное произведение векторов и : . Оно равно нулю, что указывает на перпендикулярность нормальных векторов плоскостей АВС и ABD . Значит, плоскости АВС и ABD также перпендикулярны.

Заметим, что можно было по координатам заданных точек получить общие уравнения плоскостей АВС и ABD (смотрите статью уравнение плоскости, проходящей через три заданные точки), из них найти координаты нормальных векторов этих плоскостей, после чего проверить выполнение условия перпендикулярности нормальных векторов плоскостей.

Общее уравнение плоскости. Различные виды уравнения плоскости

Плоскостью называется поверхность, вес точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, где А, В, С – координаты вектора -вектор нормали к плоскости.

Возможны следующие частные случаи:

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

Уравнение плоскости, проходящей через три точки.

Для того, чтобы через три какие-либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны. ( ) = 0

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор .

Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости.

Пусть заданы два вектора и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы должны быть компланарны.

Уравнение плоскости по точке и вектору нормали.

Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на -D

, заменив , получим уравнение плоскости в отрезках: ; Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

Уравнение плоскости в векторной форме.

где – радиус- вектор текущей точки М(х, у, z),

– единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

,  и  – углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид: xcos + ycos + zcos – p = 0.


источники:

http://www.cleverstudents.ru/line_and_plane/perpendicular_planes.html

http://nauchniestati.ru/spravka/obshhee-uravnenie-ploskosti-razlichnye-vidy-uravnenija-ploskosti/