По алгебре с 26 решение квадратных уравнений

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: \( 3\frac<1> <3>— 5\frac<6> <5>z + \frac<1><7>z^2 \)

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\( -x^2+6x+1<,>4=0, \quad 8x^2-7x=0, \quad x^2-\frac<4><9>=0 \)
имеет вид
\( ax^2+bx+c=0, \)
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём \( a \neq 0 \).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \( a \neq 0 \), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
\( x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \( c \neq 0 \);
2) ax 2 +bx=0, где \( b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \( c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\( x^2 = -\frac \Rightarrow x_ <1,2>= \pm \sqrt< -\frac> \)

Так как \( c \neq 0 \), то \( -\frac \neq 0 \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \( b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\( x^2+\fracx +\frac=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\( x^2+2x \cdot \frac<2a>+\left( \frac<2a>\right)^2- \left( \frac<2a>\right)^2 + \frac = 0 \Rightarrow \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
\( D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\( x_ <1,2>= \frac < -b \pm \sqrt> <2a>\), где \( D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \( x=-\frac <2a>\).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\( \left\< \begin x_1+x_2=-p \\ x_1 \cdot x_2=q \end \right. \)

Квадратные уравнения (8 класс)

Уравнение называют квадратным, если его можно записать в виде \(ax^2+bx+c=0\), где \(x\) неизвестная, \(a\), \(b\) и \(с\) коэффициенты (то есть, некоторые числа, причем \(a≠0\)).

В первом примере \(a=3\), \(b=-26\), \(c=5\). В двух других \(a\),\(b\) и \(c\) не выражены явно. Но если эти уравнения преобразовать к виду \(ax^2+bx+c=0\), они обязательно появятся.

Коэффициент \(a\) называют первым или старшим коэффициентом, \(b\) – вторым коэффициентом, \(c\) – свободным членом уравнения.

Виды квадратных уравнений

Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

Как решать квадратные уравнения

В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных — смотрите здесь .

Итак, стандартный алгоритм решения полного квадратного уравнения:

    Преобразовать уравнение к виду \(ax^2+bx+c=0\).

    Выписать значения коэффициентов \(a\), \(b\) и \(c\).
    Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения \(2x^2-3x+5=0\), коэффициент \(b=-3\), а не \(3\).

    Вычислить значение дискриминанта по формуле \(D=b^2-4ac\).

    Решите квадратное уравнение \(2x(1+x)=3(x+5)\)
    Решение:

    Теперь переносим все слагаемые влево, меняя знак.

    Уравнение приняло нужный нам вид. Выпишем коэффициенты.

    Найдем дискриминант по формуле \(D=b^2-4ac\).

    Найдем корни уравнения по формулам \(x_1=\frac<-b + \sqrt><2a>\) и \(x_2=\frac<-b - \sqrt><2a>\).

    Решите квадратное уравнение \(x^2+9=6x\)
    Решение:

    Тождественными преобразованиями приведем уравнение к виду \(ax^2+bx+c=0\).

    Найдем дискриминант по формуле \(D=b^2-4ac\).

    Найдем корни уравнения по формулам \(x_1=\frac<-b + \sqrt><2a>\) и \(x_1=\frac<-b - \sqrt><2a>\).

    В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

    Решите квадратное уравнение \(3x^2+x+2=0\)
    Решение:

    Уравнение сразу дано в виде \(ax^2+bx+c=0\), преобразования не нужны. Выписываем коэффициенты.

    Найдем дискриминант по формуле \(D=b^2-4ac\).

    Найдем корни уравнения по формулам \(x_1=\frac<-b + \sqrt><2a>\) и \(x_1=\frac<-b - \sqrt><2a>\).

    Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

    Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

    Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

    Пример. Решить уравнение \(x^2-7x+6=0\).
    Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут \(6\), а в сумме \(7\). Простым подбором получаем, что эти числа: \(1\) и \(6\). Это и есть наши корни (можете проверить решением через дискриминант).
    Ответ: \(x_1=1\), \(x_2=6\).

    Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты \(b\) и \(c\).

    Алгебра

    Квадратные уравнения

    План урока:

    Определение квадратного уравнения

    Изучая понятие многочленов, мы познакомились с квадратными трехчленами. Так называют полином 2-ой степени, содержащий только одну переменную. Если его приравнять к нулю, то получится квадратное уравнение. Дадим определение квадратному уравнению:

    Приведем несколько конкретных примеров:

    • 5х 2 + 4х + 7 = 0
    • – 3х 2 + х – 1,5 = 0
    • 0,05х 2 + 99,568х – 47,21 = 0

    Числа a, b и с называют коэффициентами квадратного уравнения. Отметим, что числа b и c могут равняться нулю, и в этом случае соответствующее слагаемое просто не записывается:

    Эти уравнения именуют неполными.

    Если же коэффициент а=0, то получается линейное уравнение, которое мы уже умеем решать:

    Естественно, что для обозначения переменной может использоваться любая буква, а не только х:

    • у 2 + 3,5х – 93 = 0
    • – 32z 2 + 11z – 78 = 0

    Для обозначения коэффициентов могут использоваться специальные термины:

    • а – старший коэффициент;
    • b– второй коэффициент;
    • с – свободный член.

    Неполные квадратные уравнения можно очень легко решить. Сначала рассмотрим пример, в котором b = 0:

    Перенесем вправо свободный коэффициент:

    Далее поделим на старший коэффициент обе части равенства:

    Понятно, что х равен квадратному корню из 9. Напомним, что у каждого положительного числа есть два квадратных корня! Один из них является положительным числом и называется арифметическим, а другой противоположен ему по знаку. Поэтому можно записать, что

    Иногда используют более короткую запись:

    Не любое квадратное уравнение, у которого нет второго коэффициента b, будет иметь решение. Рассмотрим уравнение

    Будем решать его таким же путем, перенося свободный коэффициент c вправо и деля уравнение на старший коэффициент a:

    Квадрат действительного числа не может быть отрицательным. Значит, данное уравнение не будет иметь корней.

    Сформулируем общий алгоритм решения неполных квадратных уравнений такого типа:

    Теперь изучим неполные уравнения, в которых нет свободного слагаемого с. Рассмотрим их на примере:

    Слева вынесем переменную х за скобки:

    Теперь слева находится произведение двух множителей, а справа – ноль. Очевидно, что произведение может равняться нулю лишь в том случае, когда один из составляющих его множителей (х или 7х + 21) является нулем.

    Зная это, запишем:

    х = 0 или 7х + 21 = 0

    Получили корень х = 0 и ещё одно линейное уравнение, которое легко решить:

    В результате имеем два корня: 0 и – 3

    Опишем общий алгоритм решения этих неполных уравнений:

    Решение квадратного уравнения

    Найти решение квадратного уравнения, если оно полное, достаточно тяжело. Нам поможет формула квадрата суммы:

    (а + b) 2 = a 2 + 2ab + b 2

    Напомним, что с ее помощью можно разложить на множители некоторые квадратные полиномы:

    х 2 + 8х + 16 = х 2 + 2•4•х + 4 2 = (х + 4) 2

    Конечно, здесь нам повезло с квадратным трехчленом – его коэффициенты позволяли воспользоваться формулой квадрата суммы. Однако похожие преобразования можно выполнить и тогда, когда коэффициенты не такие удобные:

    х 2 + 8х + 20 = х 2 + 8х + 16 + 4 =(х 2 + 8х + 16) + 4 = (х 2 + 2•4•х + 4 2 ) + 4 =

    Здесь мы разложили число 20 на сумму 16 + 4, чтобы можно было часть выражения «свернуть» формулой квадрата суммы. Такой прием можно применить вообще к любому квадратному трехчлену:

    4х 2 + 10х + 4 = (2х) 2 + 2•2х•2,5 + 2,5 2 – 2,5 2 + 4 = (2х + 2,5) 2 – 2,5 2 + 4 =

    = (2х + 2,5) 2 – 6,25 + 4 = (2х + 2,5) 2 – 2,25

    Здесь мы добавили к трехчлену слагаемое 2,5 2 и тут же его отняли. Оно было необходимо для получения формулы квадрата суммы.

    Отметим, что подобное свертывание можно использовать для решения квадратного уравнения. Действительно, пусть дано уравнение

    4х 2 + 10х + 4 = 0

    Выше мы уже преобразовали трехчлен, стоящий слева. Произведем замену:

    (2х + 2,5) 2 – 2,25 = 0

    Имеем уравнение, очень похожее на неполное, где отсутствует коэффициент b. Попробуем его решить аналогичным путем:

    Из этой записи мы получили два линейных уравнения:

    2х + 2,5 = – 1,5 или 2х + 2,5 = 1,5

    Решая их, находим два корня:

    2х = – 1,5 – 2,5 или 2х = 1,5 – 2,5

    2х = – 4 или 2х = – 1

    х = – 2 или х = – 0,5

    Аналогично можно решить и любое другое полное квадратное уравнение. Однако проще пользоваться специальными формулами, в которые надо подставлять значения коэффициентов a, b, с и получать корни квадратного уравнения. Выведем эти формулы.

    Пусть есть уравнение

    Поделим обе части уравнения на коэффициент а:

    Далее надо выделить квадрат суммы, что бы потом свернуть его по формуле сокращенного умножения:

    Далее обозначим числитель в правой части (b 2 – 4ac) буквой D. Эту величину называют дискриминантом квадратного уравнения.

    Перепишем уравнение с учетом этой замены:

    Далее рассмотрим три случая:

    1. D 2 – заведомо положительное число). Слева стоит квадрат выражения, а он никак не может оказаться отрицательным. В итоге имеем, что при отрицательном дискриминанте у уравнения отсутствуют корни.
    2. D = 0. При таком варианте справа получается ноль:

    Квадрат только одного числа равен нулю – самого нуля, поэтому

    Итак, при нулевом дискриминанте у уравнения есть только один корень.

    1. D> 0. В этом варианте дробь справа оказывается положительным числом, а потому у нее есть два квадратных корня. Решение будет выглядеть так:

    Полученное выражение называют основной формулой корней квадратного уравнения.

    Если дискриминант – положительное число, то уравнение существует два корня. Для вычисления первого из них надо в формуле квадратного уравнения вместо знака ± поставить минус, а для вычисления второго – знак плюс. Часто 1-ый корень обозначают как х1, а 2-ой – как х2. Заметим, что если D = 0, то при подстановке в основную формулу будет получаться один и тот же корень независимо от выбора знака плюс или минус.

    Пример. Решите уравнение

    2х 2 – 5х – 3 = 0

    Решение. Выпишем коэффициенты уравнения

    Вычислим значение дискриминанта:

    D = b 2 – 4ас = (– 5) 2 – 4•2•(– 3) = 25 + 24 = 49

    Так как он больше нуля, то должно получиться два корня. Их можно найти по основной формуле квадратного уравнения:

    Пример. Найдите все корни уравнения

    3х 2 + 6х + 5 = 0

    Решение. Найдем дискриминант:

    D = b 2 – 4ас = 6 2 – 4•3•5 = 36 – 60 = – 24

    Дискриминант оказался отрицательным, значит, и корней у уравнения нет.

    Ответ: нет корней.

    Пример. Найдите значения х, при которых выполняется равенство

    4х 2 – 12х + 9 = 0

    Решение. Вычислим дискриминант:

    D = (– 12) 2 – 4•4•9 = 144 – 144 = 0

    Так как D = 0, существует лишь один корень:

    Пример. Найдите значения у, при которых справедливо равенство

    2у 2 + 4у + 9 = у 2 + 11у + 3

    Решение. На первый взгляд это уравнение не похоже на изучавшие до этого квадратные уравнения. Однако слагаемые, записанные справа, можно перенести влево, после чего можно будет привести подобные слагаемые:

    2у 2 + 4у + 9 = у 2 + 11у + 3

    2у 2 + 4у+ 9–у 2 – 11у– 3 = 0

    Получили классическое квадратное уравнение, для которого можно рассчитать дискриминант:
    D = b 2 – 4ас = (– 7) 2 – 4•1•6 = 49 – 24 = 25

    Найдем значения двух корней:

    Уравнения, сводящиеся к квадратным

    Так как любое квадратное уравнение решается довольно легко, то другие, более сложные уравнения, часто пытаются свести к квадратным. Сначала рассмотрим так называемые биквадратные уравнения. Пусть надо решить уравнение

    2х 4 –26х 2 + 72 = 0

    На первый взгляд в левой части стоит полином четвертой, а не второй степени, то есть это уравнение не является квадратным. Введем переменную t, равную х 2 :

    Если это выражение возвести в квадрат, то получим

    t 2 = (х 2 ) 2 = х 4

    Теперь заменим в исходном уравнении х 4 на t 2 , а х 2 на t:

    2t 2 –26t + 72 = 0

    Получили квадратное уравнение, из которого можно найти значение t. Посчитаем дискриминант:

    D = (– 26) 2 – 4•2•72 = 676 – 576 = 100

    Можно найти два значения t:

    Однако нам надо найти значение х, а не t. Вспомним, что мы проводили замену

    Подставляя вместо t найденные корни 4 и 9, получим ещё два уравнения:

    Первое имеет корни (– 2) и 2, а второе (– 3) и 3. Все эти 4 числа являются корнями исходного уравнения

    2х 4 – 26х 2 + 72 = 0

    Уравнения, которые можно свести к квадратному заменой переменных t = x 2 , называют биквадратными уравнениями.

    Мы рассмотрели пример, в котором биквадратное уравнение имело 4 корня. Однако порою их может быть и меньше.

    Пример. Укажите все корни уравнения

    у 4 + 4у 2 – 5 = 0

    Решение. Данное уравнение подходит под определение биквадратного, а потому произведем замену t = y 2 :

    D = 4 2 – 4•1•(– 5) = 16 – (– 20) = 36

    далее проводим обратную замену и получаем уравнения:

    Первое из них не имеет решения, ведь квадрат числа – это неотрицательное число. Поэтому решать придется только второе уравнение:

    Подстановка t = x 2 самая простая и очевидная, однако, порою нужно выполнять более сложные подстановки.

    Пример. Найдите все z, для которых выполняется условие

    (z – 2)(z – 3)(z – 4)(z – 5) = 24

    Решение.Замена неочевидна, и всё же попробуем такой вариант:

    Тогда содержимое каждой скобки примет вид:

    z– 2 = z– 3,5 + 1,5 = t + 1,5

    z– 3 = z– 3,5 + 0,5 = t + 0,5

    z– 4 = z– 3,5 – 0,5 = t–0,5

    z– 5 = z – 3,5 – 1,5 = t–1,5

    Уравнение примет вид:

    (t + 1,5)(t + 0,5)(t – 0,5)(t – 1,5) = 24

    Поменяем местами скобки:

    (t – 0,5)(t + 0,5)(t – 1,5)(t + 1,5) = 24

    Можно заметить, что в соседние скобки можно переписать, используя формулу разности квадратов:

    (t 2 – 0,5 2 )(t 2 – 1,5 2 ) = 24

    Для удобства произведем ещё одну замену s = t 2 :

    (s– 0,5 2 )(s– 1,5 2 ) = 24

    Раскроем скобки в левой части:

    s 2 – 2,25s– 0,25s + 0,5625 = 24

    s 2 – 2,5s + 0,5625– 24 = 0

    s 2 – 2,5s– 23,4375 = 0

    Получили классическое квадратное уравнение, которое решается через дискриминант:

    D = (– 2,5) 2 – 4•1•(– 23,4375) = 6,25 + 93,75 = 100

    Произведем 1-ую обратную замену t 2 = s:

    Первое уравнение решений не имеет, а у второго ровно 2 корня:

    Пришло время второй замены z– 3,5 = t, из которой получаем два уравнения:

    z– 3,5 = – 2,5 или z– 3,5 = 2,5

    z= – 2,5 + 3,5 или z= 2,5 + 3,5

    Задачи, решаемые с помощью квадратных уравнений

    При рассмотрении задач, связанных с геометрией, свойствами чисел, движением тел, очень часто возникают квадратные уравнения.

    Пример. Площадь прямоугольника составляет 126 см 2 , а одна из его сторон на 5 см длиннее другой. Каковы длины сторон этого прямоугольника?

    Решение. Обозначим как k длину той стороны прямоугольника, которая меньше. Тогда протяженность второй стороны будет равна k + 5 см. Площадь прямоугольника – это произведение его сторон, а потому можно записать:

    Решим это уравнение:

    k 2 + 5k – 126 = 0

    D = 5 2 – 4•1•(– 126) = 25 + 504 = 529

    Первый корень равен (– 14). Однако ясно, что длина стороны прямоугольника не может измеряться отрицательным числом, поэтому этот корень надо отбросить. Остается только k = 9. То есть длина первой стороны равна 9 см. Вторая сторона равна k + 5, то есть 9 + 5 = 14 см.

    Ответ: 9 и 14 см.

    Пример. Сумма квадратов двух последовательных нечетных чисел составляет 290. Что это за числа?

    Решение. Обозначим первое число как n. Нечетные числа чередуются с четными, поэтому следующим нечетным числом будет n + 2. Перепишем условие задачи в виде уравнения и найдем его корни:

    n 2 + (n + 2) 2 = 290

    n 2 + n 2 + 4n + 4 – 290 = 0

    2n 2 + 4n – 286 = 0

    D = 4 2 – 4•2•(– 286) = 16 + 2288 = 2304

    Получили два решения. Если первое число равно – 13, то второе составит n + 2 = – 11. Если же n = 11, то второе число будет равно 13.

    Ответ: – 13 и 11, либо 11 и 13.

    Теорема Виета

    Большое значения имеют уравнения, у которых старшим коэффициентом является единица. Математики называют их приведенными уравнениями.

    Дадим несколько примеров приведенных квадратных уравнений:

    • х 2 + 6х + 29 = 0
    • у 2 – 7,54у + 87 = 0
    • z 2 + 21z + 112 = 0

    Название «приведенное» возникло из-за того, что каждое квадратное уравнение можно сделать приведенным, если поделить его части на коэффициент перед х 2 . Пусть есть уравнение

    Поделим на 4 обе его части:

    х 2 + 1,25х + 1,5 = 0

    Для приведенного уравнения сформулирована теорема Виета, которая указывает на взаимосвязь его корней и коэффициентов:

    Доказать это очень легко. Если у уравнения

    существует два корня, то они вычисляются по формулам:

    Найдем их сумму:

    Аналогично можно посчитать и их произведение:

    Естественно, если у уравнения не существует корней (D 2 – 8х + 15 = 0; корни (х1 и х2) равны 3 и 5, в чем можно убедиться подстановкой:

    Перемножим корни и получим 3•5 = 15 (свободный член), при сложении корней получается 3 + 5 = 8 (второй коэффициент без минуса);

    1. у 2 + 13у + 42= 0, корни (– 6) и (– 7), произведение корней 42, сумма корней – 13;
    2. х 2 + 2х – 8 = 0, корни (– 4) и 2, их сумма равна (– 2), а произведение (– 8).

    Справедливо и утверждение, известное как обратная теорема Виета:

    Возьмем числа 4 и 9. Их сумма равна 13, а произведение 36, поэтому они являются корнями уравнения:

    х 2 – 13х + 36 = 0

    в чем можно убедиться, подставив их вместо х.

    Пример. Учитель математики перед уроком составляет квадратные уравнения, причем стремится к тому, чтобы у них были целые корни (чтобы детям было просто считать). Подскажите ему пример уравнения, чьи корни равны 3 и 8.

    Решение. Перемножим и сложим числа 3 и 8:

    Соответственно, уравнением с корнями 3 и 8 будет

    х 2 – 11х + 24 = 0

    Ответ: х 2 – 11х + 24 = 0

    Разложение квадратного трехчлена на множители

    При решении уравнения

    мы находим его корни. Однако отдельно выделяют и такое понятие, как корень многочлена. Так называют значение переменной, которая обращает полином в ноль.

    Понятно, что для нахождения корней полинома второй степени следует решить квадратное уравнение.

    Сначала рассмотрим трехчлены, у которых коэффициент при х 2 а равен 1. Предположим, что нам удалось разложить его на произведение двух линейных полиномов:

    х 2 + bх + с = (х –s)(х –k)

    где s и k– какие-то произвольные числа.

    Выражение справа является произведением, а потому обращается в ноль только тогда, когда нулю равен один из множителей:

    х – s = 0 или х – k = 0

    Так как при х = s или х = k в ноль обращается правая часть тождества, то также должна обращаться и левая часть. Получается, что числа s и k – это корни трехчлена х 2 + bх + с.

    Убедимся в этом, раскрыв скобки в правой части тождества:

    (х –s)(х –k) = х 2 –kx–sx + sk = х 2 – (k + s)х + sk

    подставим это выражение в исходное равенство:

    х 2 + bх + с = (х – s)(х — k) = х 2 – (k + s)х + sk

    х 2 + bх + с = х 2 – (k + s)х + sk

    Получается, произведение s и k дает свободный член, а их сумма в точности равна коэффициенту при х, взятому со знаком минус. Значит, по теореме Виета, они являются корнями уравнения!

    Обозначим корни уравнения как х1 и х2. Если у трехчлена коэффициент а отличен от единицы, то эта формула (ее называют формулой разложения квадратного трехчлена на множители) примет несколько иной вид:

    То есть справедливо утверждение:

    А теперь и докажем его.

    Пусть есть уравнение ах 2 + bx + c = 0 с корнями х1 и х2. Поделим его на а:

    х 2 + (b/a)х + с/а = 0

    по теореме Виета можно записать:

    Умножив первое тождество на (– а), а второе наа, получим

    Осталось подставить эти равенства в исходный многочлен:

    Для чего же мы доказывали эту теорему? С ее помощью можно выполнить разложение квадратного трехчлена на множители. Проиллюстрируем это на примерах.

    Пример. Разложите полином

    2х 2 + 12х – 14

    на множители.

    Решение. Для начала следует решить уравнение 2х 2 + 12х – 14 = 0:

    D = 12 2 – 4•2•(– 14) = 144 + 112 = 256

    Найдя х1 и х2, можем выполнить и разложение:

    2х 2 + 12х – 14 = 2(х – 1)(х – (– 7)) = 2(х – 1)(х + 7)

    Ответ: 2(х – 1)(х + 7)

    Пример. Упростите выражение

    Решение. На первый взгляд кажется, что сокращать нечего. Однако и в числителе, и в знаменателе находятся квадратные трехчлены. Разложим их на множители, решив соответствующие уравнения:

    D = 2 2 – 4•1•(– 15) = 4 + 60 = 64

    h 2 – 2h– 15 = (h+ 5)(h– 3)

    Теперь раскладываем второй полином:

    D = (– 9) 2 – 4•1•18 = 81 – 72 = 9

    Соответственно, можно записать:

    h 2 – 9h +18 = (h– 3)(h– 6)

    А теперь подставим в исходную дробь полученные выражения:

    Отметим, что если у полинома второй степени нет корней, то и разложить его на множители не получится.

    Дробно-рациональные уравнения

    Периодически приходится сталкиваться с уравнениями, где переменные присутствуют в знаменателе какой-нибудь дроби. Их называют дробно-рациональными уравнениями. Обычно их можно свести к более простому виду, но при этом следует учитывать ту особенность, что корень уравнения не должен обращать знаменатель в ноль.

    Пример. Найдите решение дробно-рационального уравнения

    Решение. Для начала перенесем дробь из правой части в левую, а потом приведем дроби к общему знаменателю:

    Умножим уравнение на величину (х – 2)(х + 3)

    (х + 1)(х – 2) + 10х – 4(х + 3) = 0

    х 2 – 2х + х – 2 + 10х – 4х – 12 = 0

    D = 5 2 – 4•1•(– 14) = 25 + 56 = 81

    Казалось бы, мы нашли два корня: 2 и (– 7). Однако в исходном уравнении в знаменателе стоит выражение (х – 2)(х – 3). При х = 2 оно обращается в нуль, то есть дробь потеряет смысл. Поэтому корень 2 следует отбросить, и остается лишь корень (– 7)


    источники:

    http://cos-cos.ru/math/121/

    http://100urokov.ru/predmety/urok-4-kvadratnye-uravneniya