Погрешность приближенного решения системы уравнений

Метод итераций решения системы уравнений. Пример решения

Решение получаем с помощью калькулятора Решение СЛАУ методом итераций .

Достаточное условие сходимости метода простых итераций

Прежде чем применять метод итераций, необходимо переставить строки исходной системы таким образом, чтобы на диагонали стояли наибольшие по модулю коэффициенты матрицы. Если при этом условие все таки не выполняется, то иногда удается обеспечить сходимость метода с помощью следующего метода.
Пусть дана система Ax = b. Преобразуем ее к виду: x= Qx + c
где Q = E — D•A, c = D•b
Здесь D — некоторая матрица. Нам необходимо подобрать такую матрицу D, чтобы выполнялось условие |Q| 0 =β, тогда:
x 1 =b — a x 0
x 2 =b — a x 1
.
x k+1 =b — a x k
Для нашей задачи достаточное условие сходимости выполняется.

102-1
-2-6-1
1-312

Приведем к виду:
x1=0.5-(0.2x2-0.1x3)
x2=-4.07-(0.33x1+0.17x3)
x3=3-(0.0833x1-0.25x2)
Покажем вычисления на примере нескольких итераций.
N=1
x1=0.5 — 0 • 0.2 — 0 • (-0.1)=0.5
x2=-4.07 — 0 • 0.33 — 0 • 0.17=-4.07
x3=3 — 0 • 0.0833 — 0 • (-0.25)=3
N=2
x1=0.5 — (-4.07) • 0.2 — 3 • (-0.1)=1.61
x2=-4.07 — 0.5 • 0.33 — 3 • 0.17=-4.74
x3=3 — 0.5 • 0.0833 — (-4.07) • (-0.25)=1.94
N=3
x1=0.5 — (-4.74) • 0.2 — 1.94 • (-0.1)=1.64
x2=-4.07 — 1.61 • 0.33 — 1.94 • 0.17=-4.93
x3=3 — 1.61 • 0.0833 — (-4.74) • (-0.25)=1.68
Остальные расчеты сведем в таблицу.

Nx1x2x3e1e2e3
0000
10.5-4.0730.54.073
21.61-4.741.941.110.67-1.06
31.64-4.931.680.02740.19-0.26
41.65-4.91.630.013-0.0341-0.051
51.64-4.891.64-0.0119-0.004160.00744
61.64-4.891.64-8.8E-5-0.002730.00203
71.64-4.891.64-0.0003430.000310.000691

Ответ: x1=1.64, x2=-4.89, x3=1.64

Пример №2 . Решить систему уравнений Ax = b с точностью 0.05 методами: 1) простой итерации; 2) Зейделя. Указание. Для обеспечения выполнения достаточного условия сходимости воспользоваться перестановкой строк в исходной системе уравнений.

Информатика, часть 1. «Численные методы»

Государственный комитет РФ по связи и

Сибирский государственный университет

телекоммуникаций и информатики

Методические указания предназначены для студентов заочного отделения инженерно-технических факультетов, изучающих вычислительную технику и программирование в 3-м семестре. Они содержат необходимый теоретический минимум, задачи для курсовой работы и рекомендуемую литературу.

Кафедра прикладной математики и кибернетики.

Для специальностей 2305, 2306, 2307.

Список литературы – 9 наименований.

Утверждено редакционно-издательским советом СибГУТИ в качестве методических указаний.

© Сибирская государственная академия

телекоммуникаций и информатики, 1999 г.

1. Введение

Для современных инженерно-технических задач необходимо использовать сложный математический аппарат и развитые методы их решения. При этом часто приходится встречаться с задачами, для которых аналитическое решение, т. е. общее решение в виде аналитического выражения, связывающего исходные данные задачи с требуемыми результатами, либо вообще невозможно, либо выражается такими громоздкими формулами, что использование их для практических целей явно нецелесообразно.

В этом случае применяются численные методы решения, которые позволяют достаточно просто получить решение поставленной задачи. Численные методы легко реализуются на ЭВМ с помощью вычислительных алгоритмов.

Все многообразие численных методов подразделяют на две группы — точные и приближенные.

Точными называют методы, позволяющие решить задачу в точной постановке. Точные методы не вносят погрешностей в вычисления.

Бывает так, что решить задачу в точной постановке трудно или даже невозможно. Тогда ее заменяют близкой по результатам приближенной задачей. Численный метод, реализующий такую приближенную задачу, называют приближенным методом. Приближенные методы вносят погрешности в вычисления.

Численные методы реализуются конечными или бесконечными вычислительными алгоритмами.

Приближенные методы, основанные на последовательном приближении к решению путем многократного применения какой-либо вычислительной процедуры, называют итерационными методами. В итерационных методах исходными данными для каждой последующей вычислительной процедуры являются результаты применения предыдущих процедур. Итерационные методы позволяют получить приближенное решение, сколь угодно мало отличающееся от точного решения.

Настоящие методические указания содержат основы курса «Численные методы». Для более детального изучения данного курса следует воспользоваться рекомендуемой литературой. Кроме того, для выполнения курсовой работы необходимо использовать знания, полученные в предыдущем семестре в процессе изучения курса «Вычислительная техника и программирование».

2. Абсолютная и относительная погрешность

Определения

Определение. Абсолютной погрешностью величины x называется величина

где x – приближенное значение, x0 – точное значение.

Следствие этой формулы:

Пример. Результат измерений длины комнаты – 10,2 ± 0,01 м.

Здесь, 10,2 м – приблизительное значение – результат измерений, 0,01 – погрешность измерений – абсолютная погрешность.

Обычно должно быть D x ú -1 ï + ú 2 ï; ï -5 ï > ú -2 ï + ú 1 ï; ï 4 ï > 1 + ú -2 ï.

После этого приводим систему к виду, удобному для итераций.

Получаем: , находим

.

Аналогично находятся последующие приближения X(3), X(4) и т. д.

Сравнив и , можно заметить, что они отличаются друг от друга очень незначительно (в третьем знаке после запятой) и, следовательно, в качестве решения с точностью e =10-2 можно взять X(10) . Для сведения: точное решение этой СЛУ – .

4. Решение нелинейных уравнений

Если непрерывная функция f(x) принимает значения различных знаков на концах отрезка [a, b], то есть f(a)×f(b)


источники:

http://pandia.ru/text/78/153/54046.php