Показать что функция u e xyz удовлетворяет уравнению

Показать что функция u e xyz удовлетворяет уравнению

&nbsp &nbsp &nbsp &nbsp Вариант 1 &nbsp &nbsp Вариант 2 &nbsp &nbsp Вариант 3 &nbsp &nbsp Вариант 4 &nbsp &nbsp Вариант 5 &nbsp &nbsp Вариант 6

&nbsp &nbsp &nbsp &nbsp Вариант 7 &nbsp &nbsp Вариант 8 &nbsp &nbsp Вариант 9 &nbsp &nbsp Вариант 10 &nbsp &nbsp Вариант 11 &nbsp &nbsp Вариант 12

&nbsp &nbsp Вариант 13 &nbsp &nbsp Вариант 14 &nbsp &nbsp Вариант 15 &nbsp &nbsp Вариант 16 &nbsp &nbsp Вариант 17 &nbsp &nbsp Вариант 18

&nbsp &nbsp Вариант 19 &nbsp &nbsp Вариант 20 &nbsp &nbsp Вариант 21 &nbsp &nbsp Вариант 22 &nbsp &nbsp Вариант 23 &nbsp &nbsp Вариант 24

&nbsp &nbsp Вариант 25 &nbsp &nbsp Вариант 26 &nbsp &nbsp Вариант 27 &nbsp &nbsp Вариант 28 &nbsp &nbsp Вариант 29 &nbsp &nbsp Вариант 30

&nbsp &nbsp &nbsp &nbsp 20.22. Показать, что функция y(x) удовлетворяет данному уравнению (1).

&nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp (1)

Электронная библиотека

Пример 1. Проверить удовлетворяет ли указанному уравнению данная функция z = f(x,y).

Решение. Находим частные производные первого и второго порядка:

Подставляем полученные значения производных в левую часть исходного уравнения:

В правой части уравнения имеем:

Сравнивая полученные результаты, видим, что данная функция удовлетворяет исходному уравнению.

Пример 2. Вычислить приближенно данные выражения, заменив приращения соответствующих функций их полными дифференциалами. Оценить в процентах возникающую при этом относительную погрешность вычислений.

Решение. а) Рассмотрим функцию

Значение этой функции в точке известно и равно

Вычислим приближенно значение функции по формуле:

Решение функциональных уравнений методом подстановки

Заменяя некоторые переменные функционального уравнения либо конкретными значениями, либо какими-либо другими выражениями пытаемся либо упростить это уравнение, либо привести его к такому виду, что дальнейшее решение станет очевидным. Особенность применяемого метода как раз и состоит в том, что в ряде случаев он позволяет отыскать решения в классе всевозможных функций.

1. Найдите все функции, определённые на множестве , удовлетворяющие соотношению .

Решение:

Придадим x значение . Получим

.

Отсюда .

Получим систему

Из уравнения (1) выразим и подставим в уравнение (2).

; ;

Отсюда ;

;

.

Проверим, действительно ли функция f(x) удовлетворяет уравнению .

Ответ: .

2. Найти функцию, удовлетворяющую уравнению

Решение:

2) Подставим в исходное уравнение, получим

3)Заменим z на получим

или после преобразований в правой части уравнения:

4)Итак, получили два уравнения:

5)Умножим обе части 1-го уравнения на (-2) и сложим со 2-ым уравнением, получим:

3.Пусть — некоторое действительное число. Найти функцию f(x), определённую для всех x ≠ 1 и удовлетворяющую уравнению

,где g – заданная функция, определённая при x ≠ 1.

Решение:При замене

получаем систему

.

решением которой при a 2 ≠ 1 является функция

Ответ:

4.Найти решение системы функциональных уравнений относительно неизвестных функций f(x) и g(x):

Решение:

В первом уравнении сделаем подстановку 2x = 1/z.

и первое уравнение принимает вид:

или

В результате получаем систему уравнений:

решение которой g(x) = 1/x, f(x) = x+1.

Ответ:g(x) = 1/x, f(x) = x+1.

5.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению f(х+у)=х+уf(х)+(1-х)у. (1)

Решение:

Пусть f − функция удовлетворяющая уравнению (1). Поскольку (1) выполняется при всех значениях переменных х и у, то оно будет выполнятся и при конкретных значениях этих переменных. Подставив, например, у = 0 в исходное уравнение, мы получим f(х)=х. Это равенство должно выполнятся при любом действительном х.

Таким образом, (1) => f(х)≡х или, иными словами, никакая функция кроме f(х)≡х не может удовлетворять уравнению (1). Это, тем не менее, не доказывает, что функция f(х)≡х является решением функционального уравнения (1). Непосредственная проверка показывает, что найденная функция действительно удовлетворяет уравнению при всех х,у ? R.

6.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению f(х+у)=х+уf(х)+(1-sin х)у. (2)

Решение:

Точно также, как и в предыдущей задаче, устанавливаем, что для функции f, которая удовлетворяет (2), должно выполнятся тождество f(х)≡х. Однако, подставив функцию f(х)=х в (2), мы тождества не получим. Поскольку никакие другие функции также не могут быть решениями (2), то данное уравнение решений не имеет.

7.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению

f(х+у 2 +2у+1) = у 4 +4у 3 +2ху 2 +5у 2 +4ху+2у+х 2 +х+1. (3)

Решение:

Поскольку мы хотим получить значение f(х), попробуем избавится от слагаемого у 2 +2у+1 под знаком функции. Уравнение у 2 +2у+1=0 имеет одно решение у=-1. Подставляя у= -1 в (3) получаем f(х)= х 2 -х+1 .

Ответ: f(х)= х 2 -х+1.

8.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению

f((х 2 +6х+6)у)=у 2 х 4 +12у 2 х 3 +48у 2 х 2 -4ух 2 +72у 2 х-24ух+36у 2 -24 (4)

Решение:

Как и в прошлой задаче, мы хотим получить под знаком функции свободную переменную (х или у). В данном случае, очевидно, проще получить у. Решив уравнение х 2 +6х+6)у=0 относительно х получаем х1= -1, х2= -5. Подстановка любого из этих значений в (4) дает нам f(у)=у 2 -4у.

9.Решите следующие функциональные уравнения.

в) f(x+y)+f(x-y)=2f(x)cos y

Решение:

а) Положим у=1/x. Тогда f(1/y) + 2f(y) =3/y и f(y)+2f(1/y)=3y. Отсюда f(y)= 2/y – y.

б) Положим y=x-1/x , затем z=y-1/y. Получим систему трёх линейных уравнений относительно f(x), f(y), f(z), з которой находим

в) Положив у=π/2, получаем f(х+π/2) +f(x-π/2)=0 для любого х, откуда f(x+π)= — f(x). Заменив у на у+π/2, получаем

заменив теперь х- π/2 на х, имеем:

и с учетом предыдущего:

Положив х=0, получаем отсюда и из исходного уравнения:

Таким образом, искомая функция должна иметь вид a cos y +b sin y, где a,b – константы.

10.

Решение: 1) Заменим на , получим или .

2)Умножим обе части уравнения из п.1 на (-2) и сложим с исходным уравнением:

11. 2

Решение: 1)Заменим в уравнении на , получим 2 .

2) Умножим обе части исходного уравнения 2 на (-2) и сложим с уравнением 2 ,

получим:

12.

Решение:

1) Заменим в уравнение на , .

2)Умножим уравнение на и вычтем из уравнения , получим —

, где а

13.

Решение:

1)Заменим в уравнении на получим .

2)Выразим из исходного уравнения , получим

или .

3)Подставим в уравнение , получим .

14.

Решение:

1.Заменим на , получим

2.Умножим обе части уравнения на и вычтем из уравнения

15.

Решение:1)Пусть , тогда уравнение принимает вид:

2)Пусть тогда исходное уравнение принимает вид:

3)Умножим обе части уравнения из п.1 на 2, а обе части уравнения из п.2 на (-3) и почленно сложим получившиеся уравнения:

16.

Решение:

1) Заменим на , получим или .

2)Умножим обе части уравнения из п.1 на (-2) и сложим с исходным уравнением:


источники:

http://libraryno.ru/4-reshenie-tipovogo-varianta-funkneskperem/

http://megalektsii.ru/s5548t2.html