Показательное уравнение приведение к общему основанию

Показательные уравнения

О чем эта статья:

6 класс, 7 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательного уравнения

Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.

Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:

Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.

С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a

Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.

Лекция: «Методы решения показательных уравнений»

Лекция: «Методы решения показательных уравнений».

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение аx = b, где а > 0, а ≠ 1.

1) При b 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = aс, аx = bс ó x = c или x = logab.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

1) метод приведения к одному основанию ;

3) графический метод;

4) метод введения новых переменных;

5) метод разложения на множители;

6) показательно – степенные уравнения;

7) показательные с параметром.

2. Метод приведения к одному основанию.

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т. е. уравнение надо попытаться свести к виду

Примеры. Решить уравнение:

Представим правую часть уравнения в виде 81 = 34 и запишем уравнение, равносильное исходному 3 x = 34; x = 4. Ответ: 4.

2.

Представим правую часть уравнения в виде и перейдем к уравнению для показателей степеней 3x+1 = 3 – 5x; 8x = 4; x = 0,5. Ответ: 0,5.

3.

Представим правую часть данного уравнения в виде 1 = 50 и перейдем к уравнению для показателей степеней x2-3x+2 = 0, откуда легко получить решения x = 1 и x=2.

4.

Заметим, что числа 0,2 , 0,04 , √5 и 25 представляют собой степени числа 5. Воспользуемся этим и преобразуем исходное уравнение следующим образом:

, откуда 5-x-1 = 5-2x-2 ó — x – 1 = — 2x – 2, из которого находим решение x = -1. Ответ: -1.

5. 3x = 5. По определению логарифма x = log35. Ответ: log35.

Перепишем уравнение в виде 32x+4.22x+4 = 32x.2x+8, т. е. далее

22x+4-x-8 = 33x-2x-4, т. е. 2x-4 = 3x-4. (Уже ясно, что x = 4). Перепишем уравнение, разделив на 3x-4 ≠ 0. Отсюда x – 4 =0, x = 4. Ответ: 4.

7. 2∙3x+1 — 6∙3x-2 — 3x = 9. Используя свойства степеней, запишем уравнение в виде 6∙3x — 2∙3x – 3x = 9 далее 3∙3x = 9, 3x+1 = 32 , т. е. x+1 = 2, x =1. Ответ: 1.

Тест №1. с выбором ответа. Минимальный уровень.

А1 3-x+2 =

1) 0 2) 4 3) -2 4) -4

1)17/4 2) 17 3) 13/2 4) -17/4

А3

1) 3;1 2) -3;-1 3) 0;2 4) корней нет

А4

1) 7;1 2) корней нет 3) -7;1 4) -1;-7

А5

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

А6

1) -1 2) 0 3) 2 4) 1

Тест №2 с выбором ответа. Общий уровень.

А1

1) 3 2) -1;3 3) -1;-3 4) 3;-1

А2

1) 14/3 2) -14/3 3) -17 4) 11

А3

1) 2;-1 2) корней нет 3) 0 4) -2;1

А4

1) -4 2) 2 3) -2 4) -4;2

А5

1) 3 2) -3;1 3) -1 4) -1;3

Теорема о корне: если функция f(x) возрастает (убывает) на промежутке I, число а –любое значение принимаемое f на этом промежутке, тогда уравнение f(x) = а имеет единственный корень на промежутке I.

При решении уравнений методом оценки используется эта теорема и свойства монотонности функции.

Примеры. Решить уравнения: 1. 4x = 5 – x.

Решение. Перепишем уравнение в виде 4x +x = 5.

1. если x = 1, то 41+1 = 5 , 5 = 5 верно, значит 1 – корень уравнения.

2. докажем, что он единственный.

Функция f(x) = 4x – возрастает на R, и g(x) = x –возрастает на R => h(x)= f(x)+g(x) возрастает на R, как сумма возрастающих функций, значит x = 1 – единственный корень уравнения 4x = 5 – x. Ответ: 1.

2.

Решение. Перепишем уравнение в виде .

1. если x = -1, то , 3 = 3-верно, значит x = -1 – корень уравнения.

2. докажем, что он единственный.

3. Функция f(x) = — убывает на R, и g(x) = — x – убывает на R=> h(x) = f(x)+g(x) – убывает на R, как сумма убывающих функций. Значит по теореме о корне, x = -1 – единственный корень уравнения. Ответ: -1.

Банк задач №2. Решить уравнение

б)

4. Метод введения новых переменных.

Метод описан в п. 2.1. Введение новой переменной (подстановка) обычно производится после преобразований (упрощения) членов уравнения. Рассмотрим примеры.

Примеры. Решить уравнение: 1. .

Перепишем уравнение иначе:

Обозначим 5x = t > 0, тогда т. е. 3t2 – 2t – 1 =0, отсюда t1 = 1, -не удовлетворяет условию t > 0. Итак, 5x = 1 = 50 x = 0. Ответ: 0.

2.

Решение. Перепишем уравнение иначе:

Обозначим тогда — не подходит.

t = 4 => Отсюда — иррациональное уравнение. Отмечаем, что

Решением уравнения является x = 2,5 ≤ 4, значит 2,5 – корень уравнения. Ответ: 2,5.

3. .

Решение. Перепишем уравнение в виде и разделим его обе части на 56x+6 ≠ 0. Получим уравнение

2×2-6x-7 = 2×2-6x-8 +1 = 2(x2-3x-4)+1, т. е

Корни квадратного уравнения – t1 = 1 и t2 0 при всех x, можно обе части этого уравнения разделить на 2x, не опасаясь при этом потери решений. Получим 3x = 1ó x = 0.

3.

Решение. Решим уравнение методом разложения на множители.

Выделим квадрат двучлена

4.

Решение. Преобразуем члены уравнения и перегруппируем слагаемые

x = -2 – корень уравнения.

Уравнение x + 1 = можно решить либо методом оценки, либо графически.

x = 1 – второй корень исходного уравнения.

Банк задач №4. Решить уравнение

а) 48x – 42x+1 – 3x+1 + 12 = 0.

б) 52x-1 + 22x – 52x +22x+2 = 0.

в) 3x – 2x+2 = 3x-1 – 2x-1 – 2x-3.

г) 4x – 5 2x+ 4 = 0.

Тест №5 Минимальный уровень.

А1 5x-1 +5x -5x+1 =-19.

1) 1 2) 95/4 3) 0 4) -1

1) 2 2) -4 3) 0 4) 4

А3 32x + 32x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

А4 x=1

1) 1 2) -3 3) -1 4) 0

А5 2x -2x-4 = 15. x=4

1) -4 2) 4 3) -4;4 4) 2

Тест № 6 Общий уровень.

1) ½ 2) 2 3) -1;3 4) 0,2

А2

1) 2,5 2) 3;4 3) log43/2 4) 0

1) 2 2) -1 3) 3 4) -3

А4

1) 1,5 2) 3 3) 1 4) -4

А5

1) 2 2) -2 3) 5 4) 0

6. Показательно – степенные уравнения.

К показательным уравнениям примыкают так называемые показательно – степенные уравнения, т. е. уравнения вида (f(x))g(x) = (f(x))h(x).

Если известно, что f(x)>0 и f(x) ≠ 1, то уравнение, как и показательное, решается приравниванием показателей g(x) = f(x).

Если условием не исключается возможность f(x)=0 и f(x)=1, то приходится рассматривать и эти случаи при решении показательно – степенного уравнения.

1. Решить уравнение

Решение. Для нахождения корней уравнения следует рассмотреть четыре случая:

1) x + 1=x2 – 1 ( показатели равны);

2) x = 1(основание равно единице);

3) x = 0 (основание равно нулю);

4) x = -1(основание равно -1).

Решим первое уравнение: x2 – x – 2 = 0, x = 2, x = -1.

x1 = 2 => 23 = 23 – верно;

x2 = -1 => (-1)0 =(-1)0 – верно;

x3 = 1 => 12 = 10 – верно;

x4 = 0 => 01 = 0(-1) – не имеет смысла.

Уравнение вида f(x)g(x) = 1 равносильно совокупности двух систем

f(x)g(x) = 1

2.

Решение. x2 +2x-8 – имеет смысл при любых x, т. к. многочлен, значит уравнение равносильно совокупности

Банк задач №5. Решить уравнение

а)

б)

7. Показательные уравнения с параметрами.

1. При каких значениях параметра p уравнение 4 (5 – 3)2 +4p2–3p = 0 (1) имеет единственное решение?

Решение. Введем замену 2x = t, t > 0, тогда уравнение (1) примет вид t2 – (5p – 3)t + 4p2 – 3p = 0. (2)

Дискриминант уравнения (2) D = (5p – 3)2 – 4(4p2 – 3p) = 9(p – 1)2.

Уравнение (1) имеет единственное решение, если уравнение (2) имеет один положительный корень. Это возможно в следующих случаях.

1. Если D = 0, то есть p = 1, тогда уравнение (2) примет вид t2 – 2t + 1 = 0, отсюда t = 1, следовательно, уравнение (1) имеет единственное решение x = 0.

2. Если p1, то 9(p – 1)2 > 0, тогда уравнение (2) имеет два различных корня t1 = p, t2 = 4p – 3. Условию задачи удовлетворяет совокупность систем

Подставляя t1 и t2 в системы, имеем

Введем функцию f(t) = t2 – 6t – a. Возможны следующие случаи.

Случай 1. Уравнение (4) имеет два различных положительных корня, если выполнятся условия

где t0 — абсцисса вершины параболы и D — дискриминант квадратного трехчлена f(t);

Таким образом,

при – 9 0. Это возможно, если

Таким образом, при a 0 уравнение (4) имеет единственный положительный корень . Тогда уравнение (3) имеет единственное решение

При a 0, тогда в результате преобразований уравнение примет вид t2 + 2t – 13 – a = 0. (*)Найдем значения a, при которых хотя бы один корень уравнения (*) удовлетворяет условию t > 0.

Рассмотрим функцию f(t) = t2 + 2t – 13 – a. Возможны случаи.

Случай 1. Для того чтобы оба корня уравнения (*) удовлетворяли неравенству t > 0, должны выполняться условия

где t0 — абсцисса вершины f(t) = t2 + 2t – 13 – a, D — дискриминант квадратного трехчлена f(t).

Система решений не имеет.

Случай 2. Для того чтобы только один корень уравнения (*) удовлетворял неравенству t > 0, должно быть выполнено условие f(0) – 13.

Случай 3. Найдем значения a, когда t  2, t  4.

откуда a  11, a  – 5.

Ответ: если a > – 13, a  11, a  5, то если a – 13,

a = 11, a = 5, то корней нет.

Список используемой литературы.

1. Гузеев основания образовательной технологии.

2. Гузеев технология: от приема до философии.

М. «Директор школы»№4, 1996 г.

3. Гузеев и организационные формы обучения.

М. «Народное образование», 2001 г.

4. Гузеев и практика интегральной образовательной технологии.

М. «Народное образование», 2001 г.

5. Гузеев из форм урока – семинара.

Математика в школе №2, 1987 г. с.9 – 11.

6. Селевко образовательные технологии.

М. «Народное образование», 1998 г.

7. Епишева школьников учиться математике.

М. «Просвещение», 1990 г.

8. Иванова подготовить уроки – практикумы.

Математика в школе №6, 1990 г. с. 37 – 40.

9. Смирнова модель обучения математике.

Математика в школе №1, 1997 г. с. 32 – 36.

10. Тарасенко способы организации практической работы.

Математика в школе №1, 1993 г. с. 27 – 28.

11. Об одном из видов индивидуальной работы.

Математика в школе №2, 1994 г. с.63 – 64.

12. Хазанкин творческие способности школьников.

Математика в школе №2, 1989 г. с. 10.

13. Сканави . Издатель , 1997 г.

14. и др. Алгебра и начала анализа. Дидактические материалы для

10 – 11 классов. М. Мнемозина, 2000 г.

15. Кривоногов задания по математике.

М. «Первое сентября», 2002 г.

16. Черкасов . Справочник для старшеклассников и

поступающих в вузы. «А С Т — пресс школа», 2002 г.

17. Жевняк для поступающих в вузы.

Минск И РФ «Обозрение», 1996 г.

18. Готовимся к экзамену по математике. М. Рольф, 1999 г.

19. и др. Учимся решать уравнения и неравенства.

М. «Интеллект – Центр», 2003 г.

20. и др. Учебно – тренировочные материалы для подготовки к Е Г Э.

М. «Интеллект – центр», 2003 г. и 2004 г.

21 и др. Варианты КИМ. Центр тестирования МО РФ, 2002 г., 2003г.

22. Гольдберг уравнения. «Квант» №3, 1971 г.

23. Как успешно обучать математике.

Математика, 1997 г. №3.

24 Окунев за урок, дети! М. Просвещение, 1988 г.

25. Якиманская – ориентированное обучение в школе.

«Директор школы», 1996 г. сентябрь.

26. Лийметс работа на уроке. М. Знание, 1975 г.

Показательные уравнения.Решу ЕГЭ 2022 по математике профиль на 100 баллов

Определение

Показательным уравнением называется уравнение, содержащие неизвестную величину в показателе степени.

В какую степень надо возвести 2, чтобы получить 16? Понятно, что в степень 4.

При том, x = 4 — единственное решение данного уравнения. Как вы

думаете почему? Это легко понять, посмотрев на график показательной функции y = 2**x:

Рис. 1 График показательной функции

данная функция монотонно возрастает (это когда x2 ˃ x1, y2 ˃ y1) и потому каждое своё значение принимает ровно один раз. Не существует других

значений x, кроме 4, таких, что 2**x = 16.

Простейшее показательное уравнение — это уравнение вида

где a > 1 или 0 0, то уравнение (1) имеет решение, и притом единственное. Действительно, при a > 1 показательная функция монотонно возрастает, а при 0 Вконтакте

  • Одноклассники
  • Facebook
  • Twitter
  • ЕГЭ по математике 2022Красивой незнакомке я дарю цветы

    Нет комментариев

    Оставить комментарий

    Подписка на статьи

    Делюсь интересной информацией не только на блоге, но и в социальных сетях!

    YouTube Instagram Facebook Вконтакте Одноклассники Twitter


    источники:

    http://pandia.ru/text/80/142/56386.php

    http://stanislavivanashko.ru/yegepokazatelnyye-uravneniya