Показательные и логарифмические уравнения и неравенства учебник

Логарифмические и показательные уравнения и неравенства, Гейдман Б.П., 2003

Логарифмические и показательные уравнения и неравенства, Гейдман Б.П., 2003.

Пособие предназначено для учащихся ОЛ ВЗМШ при МГУ им. Ломоносова. Оно содержит теоретический материал, посвященный общим принципам решения логарифмических и показательных уравнений, неравенств и систем уравнений, а также разобранные примеры и задачи для самостоятельного решения. В конце пособия приведено контрольное задание по данной теме.

Введение.
Настоящее пособие построено по следующему плану. В §1 мы напоминаем некоторые основные понятия. §§2-4 посвящены логарифмическим и показательным уравнениям и неравенствам, основной прием решения которых состоит в построении цепочки равносильных переходов. После нескольких переходов мы приходим к простейшему уравнению или неравенству, системе или совокупности простейших уравнений и неравенств.

Оглавление.
Введение.
1.Равносильность и следование предложений.
2.Логарифмические и показательные уравнения.
3.Логарифмические и показательные неравенства.
Ключ к тестам.
4.Некоторые частные приемы решения показательных и логарифмических уравнений и неравенств.
5.Задачи для самостоятельного решения.
Ответы, указания, решения.
6.Контрольное задание.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Логарифмические и показательные уравнения и неравенства, Гейдман Б.П., 2003 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Показательные и логарифмические уравнения, неравенства

Разделы: Математика

В данной статье я хочу привести методический материал, который использую при проведении обобщающего урока по теме «Решение показательных и логарифмических уравнений и неравенств» с учениками 10 класса.

Цель урока: систематизировать знания о методах решений различных типов указанных уравнений и неравенств, закрепить навыки решения задач.

Ход урока

Показательные уравнения

Пример 1. 4·2 x — 2 x = 96 (линейное показательное уравнение).

Вводим новую переменную 2 x = у; у > 0, т.к. показательная функция не может принимать отрицательные значения.

Уравнение 2 x = 32 имеет корень x = 5.

Ответ: 5

Пример 2. 5 x + 2 / 5 x — 3 = 0 (квадратное показательное уравнение).

Вводим новую переменную 5 x = у; у > 0, т.к. показательная функция не может

принимать отрицательные значения.

Решая квадратное уравнение, получаем корни у1 = 1, у2 = 2.

Уравнение 5 x = 1 имеет корень х = 0.

Уравнение 5 x = 2 имеет корень х = log52.

Ответ: 0; log52

Показательные неравенства

Пример 1. 5 x — 5 x+2 ≥ — 120 (линейное показательное неравенство).

— 24 · 5 x ≥ — 120 | : (-24),

Т.к. 5 > 1, то функция у = 5 x является возрастающей.

Таким образом, при х ≤ 1 неравенство является верным.

Ответ: (-∞; 1]

Пример 2. 5 x +2 · 5 -x – 3 ≤ 0 (квадратное показательное неравенство).

5 2x +2 – 3 · 5 x ≤ 0 .

Вводим новую переменную 5 x = у > 0, т.к. показательная функция не может

принимать отрицательные значения.

Решая квадратное неравенство, получаем 1≤ y ≤ 2 .

Отсюда получим неравенство 1≤ 5 x ≤ 2.

Решая его, получаем 0 ≤ х ≤ log52

Ответ: [0; log52]

Логарифмические уравнения

Пример 1. log16x + log4x + log2x= 7 (переход к новому основанию логарифма).

Используя формулу перехода к новому основанию логарифма, получаем

Ответ: 16

Пример 2. lg 2 x– 3·lg x +2 = 0 (квадратное логарифмическое уравнение).

Вводим новую переменную lg x = у.

Получаем квадратное уравнение относительно новой переменной y 2 — 3y + 2 = 0 .

Решая квадратное уравнение, получаем корни у1 = 1, у2 = 2.

Ответ: 10; 100

Пример 3. log2(x 2 — 3x) = log2 (х — 3) (потенцирование логарифмических уравнений).

Потенцируя уравнение, получаем x 2 — 3x = х — 3 .

Решая квадратное уравнение, получаем корни х1 = 1, х2 = 3 .

При потенцировании логарифмического уравнение возможно появление посторонних корней, поэтому необходима проверка.

1) подставляя х = 1 в исходное уравнение, получаем log2(- 2).

Это выражение не имеет смысла, т.к. логарифмическая функция определена при положительном значении аргумента. Поэтому x1 не является корнем заданного уравнения.

2) подставляя х = 3 в исходное уравнение, получаем log2(0).

Это выражение также не имеет смысла, поэтому x2 не является корнем заданного уравнения.

Ответ: решений нет

Логарифмические неравенства

Пример 1. lg 2 x– lgx – 2 > 0 (квадратное логарифмическое неравенство).

ОДЗ: x > 0, т.к. логарифмическая функция определена при положительном значении аргумента.

Вводим новую переменную lg x = t .

Это квадратное неравенство выполняется при t 2 .

Множество всех решений исходного неравенства есть объединение множеств всех решений двух неравенств lgx 2 .

Т.к. логарифмическая функция с основанием 10 определена при х > 0 и возрастает,то первое неравенство имеет решение 0 100.

Ответ: (0; 0,1)U(100; +∞)

Пример 2. log5(3 — 4x) 0, откуда х 0,7.

С учётом области определения неравенства имеем 0,7 18.05.2014

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).


источники:

http://urok.1sept.ru/articles/645454

http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie