Показательные логарифмические уравнения как решать

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс Урок №44. Показательные и логарифмические уравнения и неравенства.

Перечень вопросов, рассматриваемых в теме

1) показательные уравнения и неравенства;

2) логарифмические уравнения и неравенства;

3) системы уравнений.

Глоссарий по теме

Показательными называются уравнения и неравенства, у которых переменная содержится в показатели степени.

Логарифмические уравнения и неравенства — это уравнения и неравенства, в которых переменная величина находится под знаком логарифма.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Вы уже умеете решать все виды уравнений и неравенств. Наша задача обобщить изученное, привести знания в систему. Начнем с показательных уравнений.

a х =b. где a>0, a≠1

Если b>0, уравнение имеет один корень: x=loga b. График функции y=a x пересекает прямую y=b в одной точке.

Если b≤0 корней нет. График функции y=a x не пересекает прямую y=b.

При решении неравенств, обращаем внимание на основание. Если а>0, знак неравенства сохраняется. Если а 0, a≠1.

Логарифмическое уравнение logax=b имеет один положительный корень x=a b при любом значении b.

График функции пересекает прямую y=b в одной точке.

Уравнение имеет один положительный корень x=a b при любом b. График функции у= logax пересекает прямую y=b в одной точке.

При решении логарифмических неравенств обращаем внимание на область допустимых значений. Затем с учетом ОДЗ и значения решаем неравенство.

Теперь рассмотрим методы решения. Основных приема два: приведение к одинаковому знаменателю и замена переменной.

1 прием. Как в показательном, так и в логарифмическом уравняем основания. Затем сравним показатели или числа, стоящие под знаком логарифма.

2 прием. Замена переменных.

Находим корни и делаем обратную замену. При решении неравенств применяем те же самые приемы.

При решении логарифмических уравнений, возможно появление посторонних корней. Причина их появления — расширение области определения исходного уравнения. Поэтому проверка корней логарифмического уравнения осуществляется либо по области определения, либо непосредственной подстановкой найденных корней в исходное логарифмическое уравнение.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Решить уравнение:

При х= -2 выражение lg(x-1) не имеет смысла, т.е. х=-2 посторонний корень. Ответ: х=2.

Пример 2. Найти значение выражения (х+у). x

Найдем область определения: х>0, у>0.

  1. lg(xy)=lg100 ↔ xy=100 ↔ 2xy=200
  2. сложим два уравнения: х 2 +2ху+у 2 =425+200=625 ↔ (х+у) 2 =625

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Решение показательных уравнений методом логарифмирования

Знакомство с логарифмом числа открывает возможность использования метода логарифмирования для решения уравнений. Преимущественно методом логарифмирования решаются показательные уравнения. В этой статье мы подробно разберем, как проводится решение показательных уравнений методом логарифмирования. Здесь мы дадим необходимую теорию и, конечно же, рассмотрим характерный пример решения показательного уравнения методом логарифмирования.

Теория

Решение каких показательных уравнений проводится методом логарифмирования

В основном, методом логарифмирования решаются показательные уравнения в двух следующих случаях:

  • В одной части уравнения находится степень, произведение или частное степеней, а в другой – положительное число. Например, 2 x−1 =10 , и др.
  • И в одной, и в другой части уравнения находится степень, произведение или частное степеней, возможно с положительным числовым коэффициентом. Например, 3 x 2 −1 =5·2 x+1 и др.

Как проводится решение

Во-первых, нужно убедиться, что обе части показательного уравнения принимают только положительные значения на ОДЗ для исходного уравнения. Во-вторых, проводится логарифмирование обеих частей уравнения по одному и тому же положительному и отличному от единицы основанию. В-третьих, решается уравнение, полученное в результате логарифмирования. Это дает решение исходного уравнения.

По какому основанию логарифмировать

В принципе, в качестве основания логарифма можно брать любое положительное и отличное от единицы число. Обычно логарифмирование проводят по основанию, равному основанию одной из степеней, фигурирующих в исходном уравнении. Также в ходу основание 10 . Это удобно тем, что дает возможность проводить некоторые попутные вычисления при помощи таблицы десятичных логарифмов.

Пример решения показательного уравнения

Рассмотрим характерный пример решения показательного уравнения методом логарифмирования.

Решите показательное уравнение .


источники:

http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie

http://www.cleverstudents.ru/equations/solving_exponential_equations_logarithm_method.html