Показательные уравнения и логарифмические уравнения теория

Уравнения, часть С

Теория к заданию 13 из ЕГЭ по математике (профильной)

Уравнения, часть $С$

Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.

Схема решения сложных уравнений:

  1. Перед решением уравнения надо для него записать область допустимых значений (ОДЗ).
  2. Решить уравнение.
  3. Выбрать из полученных корней уравнения то, которые удовлетворяют ОДЗ.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

2. Подкоренное выражение, должно быть не отрицательным.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

Логарифмические уравнения

Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

4. При умножении двух логарифмов можно поменять местами их основания

6. Формула перехода к новому основанию

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

Можно выделить несколько основных видов логарифмических уравнений:

Представим обе части уравнения в виде логарифма по основанию $2$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям $\table\<\ x^2-3x-5>0;\ 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

  • Метод замены переменной.

В данном методе надо:

Решите уравнение $log_<2>√x+2log_<√x>2-3=0$

1. Запишем ОДЗ уравнения:

$\table\<\ х>0,\text»так как стоит под знаком корня и логарифма»;\ √х≠1→х≠1;$

2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:

3. Далее сделаем замену переменной $log_<2>√x=t$

4. Получим дробно — рациональное уравнение относительно переменной t

Приведем все слагаемые к общему знаменателю $t$.

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

5. Решим полученное квадратное уравнение по теореме Виета:

6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:

Прологарифмируем правые части уравнений

Приравняем подлогарифмические выражения

Чтобы избавиться от корня, возведем обе части уравнения в квадрат

7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.

Первый корень удовлетворяет ОДЗ.

$\<\table\ 16 >0; \16≠1;$ Второй корень тоже удовлетворяет ОДЗ.

  • Уравнения вида $log_x+log_x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению. После того, как корни уравнения будут найдены, надо отобрать их с учетом ОДЗ.

Дробно рациональные уравнения

  • Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
  • Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые не удовлетворяют условию ОДЗ.
  • Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения.

Показательные уравнения

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

4. При возведении в степень произведения в эту степень возводится каждый множитель

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

6. При возведении любого основания в нулевой показатель степени результат равен единице

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

8. Радикал (корень) можно представить в виде степени с дробным показателем

Виды показательных уравнений:

1. Простые показательные уравнения:

а) Вида $a^=a^$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.

b) Уравнение вида $a^=b, b>0$

Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается

2. Метод уравнивания оснований.

3. Метод разложения на множители и замены переменной.

  • Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^$.
  • Сделать замену переменной $a^=t, t > 0$.
  • Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
  • Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.

По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.

Сделаем замену переменной $2^x=t; t>0$

Получаем кубическое уравнение вида

Умножим все уравнение на $2$, чтобы избавиться от знаменателей

Разложим левую часть уравнения методом группировки

Вынесем из первой скобки общий множитель $2$, из второй $7t$

Дополнительно в первой скобке видим формулу разность кубов

Далее скобку $(t-1)$ как общий множитель вынесем вперед

Произведение равно нулю, когда хотя бы один из множителей равен нулю

Решим первое уравнение

Решим второе уравнение через дискриминант

Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения

4. Метод преобразования в квадратное уравнение

  • Имеем уравнение вида $А·a^<2f(x)>+В·a^+С=0$, где $А, В$ и $С$ — коэффициенты.
  • Делаем замену $a^=t, t > 0$.
  • Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
  • Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.

Способы разложения на множители:

  • Вынесение общего множителя за скобки.

Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:

  1. Определить общий множитель.
  2. Разделить на него данный многочлен.
  3. Записать произведение общего множителя и полученного частного (заключив это частное в скобки).

Разложить на множители многочлен: $10a^<3>b-8a^<2>b^2+2a$.

Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:

Это и есть конечный результат разложения на множители.

Применение формул сокращенного умножения

1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.

2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.

3. Разность квадратов раскладывается на произведение разности чисел и их сумму.

4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.

5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.

6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.

7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.

Метод группировки

Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.

Разложить многочлен на множители $2a^3-a^2+4a-2$

Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками.

Далее из каждой группы вынесем общий множитель

После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.

Произведение данных скобок — это конечный результат разложения на множители.

С помощью формулы квадратного трехчлена.

Если имеется квадратный трехчлен вида $ax^2+bx+c$, то его можно разложить по формуле

$ax^2+bx+c=a(x-x_1)(x-x_2)$, где $x_1$ и $x_2$ — корни квадратного трехчлена

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс Урок №44. Показательные и логарифмические уравнения и неравенства.

Перечень вопросов, рассматриваемых в теме

1) показательные уравнения и неравенства;

2) логарифмические уравнения и неравенства;

3) системы уравнений.

Глоссарий по теме

Показательными называются уравнения и неравенства, у которых переменная содержится в показатели степени.

Логарифмические уравнения и неравенства — это уравнения и неравенства, в которых переменная величина находится под знаком логарифма.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Вы уже умеете решать все виды уравнений и неравенств. Наша задача обобщить изученное, привести знания в систему. Начнем с показательных уравнений.

a х =b. где a>0, a≠1

Если b>0, уравнение имеет один корень: x=loga b. График функции y=a x пересекает прямую y=b в одной точке.

Если b≤0 корней нет. График функции y=a x не пересекает прямую y=b.

При решении неравенств, обращаем внимание на основание. Если а>0, знак неравенства сохраняется. Если а 0, a≠1.

Логарифмическое уравнение logax=b имеет один положительный корень x=a b при любом значении b.

График функции пересекает прямую y=b в одной точке.

Уравнение имеет один положительный корень x=a b при любом b. График функции у= logax пересекает прямую y=b в одной точке.

При решении логарифмических неравенств обращаем внимание на область допустимых значений. Затем с учетом ОДЗ и значения решаем неравенство.

Теперь рассмотрим методы решения. Основных приема два: приведение к одинаковому знаменателю и замена переменной.

1 прием. Как в показательном, так и в логарифмическом уравняем основания. Затем сравним показатели или числа, стоящие под знаком логарифма.

2 прием. Замена переменных.

Находим корни и делаем обратную замену. При решении неравенств применяем те же самые приемы.

При решении логарифмических уравнений, возможно появление посторонних корней. Причина их появления — расширение области определения исходного уравнения. Поэтому проверка корней логарифмического уравнения осуществляется либо по области определения, либо непосредственной подстановкой найденных корней в исходное логарифмическое уравнение.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Решить уравнение:

При х= -2 выражение lg(x-1) не имеет смысла, т.е. х=-2 посторонний корень. Ответ: х=2.

Пример 2. Найти значение выражения (х+у). x

Найдем область определения: х>0, у>0.

  1. lg(xy)=lg100 ↔ xy=100 ↔ 2xy=200
  2. сложим два уравнения: х 2 +2ху+у 2 =425+200=625 ↔ (х+у) 2 =625

Показательные и логарифмические уравнения ЕГЭ по математике

Материал для подготовки к ЕГЭ по математике на тему: «Показательные и логарифмические уравнения».

12. ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ
12.1. Показательные уравнения
12.2. Логарифмические уравнения
Тест для проверки теоретических знаний
Примеры
Задачи для самостоятельного решения
Контрольный тест

Рекомендуем использовать этот материал при тщательной подготовке к сдаче ЕГЭ на высокий балл.

В теме содержатся теория и практические задания различного уровня сложности.


источники:

http://resh.edu.ru/subject/lesson/4155/conspect/

http://ctege.info/matematika-teoriya-ege/pokazatelnyie-i-logarifmicheskie-uravneniya-spravochnik-ege-po-matematike-teoriya-i-praktika.html