Показательные уравнения и неравенства на егэ

ЕГЭ Профиль №15. Показательные неравенства

15 заданием профильного ЕГЭ по математике является неравенство. Одним, из наиболее часто встречаемых неравенств, которое может оказаться в 15 задание, является показательное неравенство. Большая часть показательных неравенств предлагаемых на реальных экзаменах решается с помощью замен, методом интервалов или разложением на множители. Прежде чем решать показательные неравенства необходимо знать свойства показательной функции и уметь решать показательные уравнения (см. задание 13 профильного ЕГЭ « Показательные уравнения »). В данном разделе представлены показательные неравенства (всего 109) разбитые на два уровня сложности. Уровень А — это простейшие показательные неравенства, которые являются подготовительными для решения реальных показательных неравенств предлагаемых на ЕГЭ по профильной математике. Уровень В — состоит из неравенств, которые предлагали на реальных ЕГЭ и в диагностических работах прошлых лет.

Показательные уравнения и неравенства

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению показательных уравнений и неравенств. В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике «Методическая копилка репетитора по физике и математике» в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств, как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией.

Основные свойства показательной функции y = a x :

Свойствоa > 10 только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

0,\, b>0: \\ a^0 = 1, 1^x = 1; \\ a^<\frac>=\sqrt[n] \, (k\in Z,\, n\in N);\\ a^ <-x>= \frac<1>; \\ a^x\cdot a^y = a^; \\ \frac=a^; \\ (a^x)^y = a^; \\ a^x\cdot b^x = (ab)^x; \\ \frac=\left(\frac\right)^x.\\ \end> \]» title=»Rendered by QuickLaTeX.com»/>

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

0. \]» title=»Rendered by QuickLaTeX.com»/>

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x.

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x-2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f(x) > a g(x) равносильно неравенству того же смысла: f(x) > g(x). Если 0 f(x) > a g(x) равносильно неравенству противоположного смысла: f(x) 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t:

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

Воспользуемся заменой переменной:

Исходное уравнение тогда принимает вид:

Итак, неравенству удовлетворяют значения t, находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Поскольку основание степени в данном случае оказалось меньше единицы, но больше нуля, равносильным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательный ответ:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x+2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x+2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x+2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Показательные неравенства на ЕГЭ по математике

Знакомство с этой темой мы начнем с самых простых показательных неравенств.

Так же, как и при решении простейших показательных уравнений, представим правую часть в виде степени числа 2:

Когда я спрашиваю школьников, что делать дальше, они обычно отвечают: «Убрать основания!» Я не против такой формулировки, просто надо четко представлять себе, почему мы так делаем. А для этого — вспомним, как выглядит график показательной функции y = 2 x .


Видим, что эта функция монотонно возрастает, то есть большему значению x отвечает большее значение y. И наоборот, если 2 x1 > 2 x2 , то x1 > x2 . Итак, от неравенства 2 x > 2 3 можно перейти к алгебраическому неравенству x > 3.

2. Следующее неравенство:

Так же, как и в предыдущем примере, представим правую часть в виде значения показательной функции. Как это сделать? С помощью логарифма, конечно:
7 = 2 log27 .

3. Еще одно неравенство:

Здесь правую часть удобно представить как .

Вспомним, как выглядит график функции :

Эта функция монотонно убывает (так как основание степени меньше единицы), поэтому большее значение функции соответствует меньшему значению аргумента. То есть из неравенства \left ( \frac<1> <2>\right )^<4>» src=»https://latex.codecogs.com/png.latex?%5Cleft&space;(&space;%5Cfrac%3C1%3E%3C2%3E&space;%5Cright&space;)%5E%3Cx%3E&space;%3E&space;%5Cleft&space;(&space;%5Cfrac%3C1%3E%3C2%3E&space;%5Cright&space;)%5E%3C4%3E» /> следует, что x x − 2 · 5 2x − 10 x > 0.

Заметим, что 4 x = 2 2x , 10 x =5 x ·2 x , и запишем неравенство в виде:
2 2x − 5 x ·2 x − 2 · 5 2x > 0.

Разделим обе части на положительную величину 5 2x и обозначим . Получим квадратное неравенство:

Кроме того, t > 0.

Графиком функции y = t 2 − t − 2 является парабола, ветви которой направлены вверх. Решая квадратное уравнение t 2 − t − 2 = 0, получим t1 = −1, t2 = 2. В этих точках наша парабола пересекает ось t.

Отметим на числовой прямой промежутки, являющиеся решениями неравенств t 2 − t − 2 > 0 и t > 0.

Видим, что обоим неравенствам удовлетворяют значения t > 2.

Но решение еще не закончено! Нам нужно вернуться к переменной x. Вспомним, что и получим:

Представим 2 в виде степени с основанием :

Его дискриминант , корни

Объединяем решения обоих систем на числовой прямой.

Получаем, что значит,

Каким бы ни было показательное неравенство — его надо упростить до неравенства Знак здесь может быть любой: . Важно, чтобы слева и справа в неравенстве находились степени с одинаковыми основаниями.

И после этого «отбрасываем» основания! При этом, если основание степени , знак неравенства остается тем же. Если основание такое, что , знак неравенства меняется на противоположный.


источники:

http://yourtutor.info/%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B7%D0%B0%D0%B4%D0%B0%D1%87-%D1%813-%D0%B5%D0%B3%D1%8D-%D0%BF%D0%BE-%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B5-%D0%BF%D0%BE%D0%BA

http://ege-study.ru/pokazatelnye-neravenstva-na-ege-po-matematike/