Показательные уравнения и неравенства способы из решения

Показательные неравенства

О чем эта статья:

10 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательных неравенств

Показательными считаются неравенства, которые включают в себя показательную функцию. Другими словами, это неравенства с переменной в показателе степени: a f(x) > a g(x) , a f(x) g(x) .

Из них показательно-степенными неравенствами являются те, в которых есть переменные и в показателе степени, и в основании.

Для изучения этой темы стоит повторить:

И, конечно, для решения тригонометрических и логарифмических показательных неравенств также придется вспомнить формулы соответствующих разделов алгебры.

Если все это еще свежо в памяти, давайте приступим. Как и к показательным уравнениям, к неравенствам стоит подходить, помня о свойствах показательной функции. Напомним, что она выглядит так: y = a x , где a > 0 и a ≠ 1. Два графика ниже дают представление о том, на что похожа такая функция, когда основание степени а больше и меньше единицы. Наверняка вы уже догадались, каково главное свойство этой функции. Да, она монотонна.

При этом заметьте — значения а всегда больше нуля. На практике в этом несложно убедиться, если возводить какое-либо число во всевозможные степени, включая отрицательные. Например: 2 -2 = 4, 2 -4 = 1/16 и т. д. Значение функции будет уменьшаться, но никогда не достигнет нуля.

Для любых а и х верно неравенство a x > 0, т. е. показательная функция не принимает отрицательных значений.

Запишем следствие монотонности показательной функции в виде формул:

  • a f(x) > a g(x) f(x) > g (x), когда функция возрастает, т. е. а > 1;
  • a f(x) > a g(x) f(x)

Как решать показательные неравенства

Как мы уже говорили, для успешного освоения этой темы нужно хорошенько повторить все, что касается показательных уравнений. Способы решения показательных неравенств выглядят примерно так же — мы будем пытаться упростить выражение, получить одинаковые степени или одинаковые основания, по возможности свести все к квадратному или рациональному уравнению. Но есть и свои тонкости.

Допустим, у нас есть простейшее показательное неравенство:

Если вы помните, как решались показательные уравнения, не придется долго думать, что делать с таким неравенством — приведем его к одинаковому основанию:

Казалось бы, все логично, но всегда ли можно смело вычеркивать одинаковые основания степеней? А что, если вместо 3 у нас основание степени будет 0,5? Посмотрим:

Проверим, верно ли в таком случае х > 2.

0,5 3 = 0, 125 и т. д.

Как видите, на самом деле в этом случае х

Если а > 1, то a x > a n a > n, и при решении неравенства можно просто убрать одинаковые основания степени.

Если 0 x > a n a

Наконец, если рассмотреть случай, когда а х > 9

Логичное, на первый взгляд, предположение, что х > 2, не выдержит проверки, потому что:

Если продолжить этот ряд, знаки будут чередоваться, и наш корень будет попеременно то меньше, то больше 2. Поэтому для ясности всегда предполагается, что основание степени — положительное число.

Это были общие правила, а сейчас рассмотрим разные виды показательных неравенств и примеры с решениями.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Показательные неравенства, сводящиеся к простейшим

Решая показательные уравнения, вы наверняка первым делом исследовали их на возможность приведения к одинаковым основаниям или одинаковым степенным функциям. Так вот, с неравенствами можно делать то же самое! Помните лишь о смене знака, если основание степени меньше единицы. И да пребудет с вами сила. 😎

Попробуем на примере несложного показательного неравенства с разными основаниями.

Пример 1

Поскольку 3 больше 1, знак не меняем:

Показательные неравенства, сводящиеся к квадратным

Снова давайте вспомним, как аналогичный метод применялся к показательным уравнениям. Если все переменные имели общий множитель, его можно было обозначить новой переменной — в итоге у нас, как правило, получалось квадратное уравнение. Нужно было лишь найти дискриминант и произвести обратную замену. И снова алгоритм решения показательных неравенств будет совершенно таким же.

Пример 1

Наименьший общий множитель в данном случае будет 3 х , обозначим его новой переменной у и перенесем все слагаемые в левую сторону.

(3 х ) 2 — 12 × 3 х + 27 х = у

y 2 — 12y + 27 х 1 х 2

Поскольку 3 > 1, мы не меняем знак.

1 2 x — 5 sinx + 2 2 — 5y + 2

Показательные неравенства, сводящиеся к рациональным

Как вы, наверное, помните из предыдущего курса алгебры, рациональные показательные неравенства — это такие, в которых левая и правая часть представляют собой дробно-рациональные функции. Метод их решения таков: нужно перенести все в левую часть, чтобы в правой остался лишь ноль, и привести к общему знаменателю. Далее решаем уравнение, отмечаем все корни на оси и применяем метод интервалов (если забыли, что это такое — повторите).

Важно помнить: если в числителе и знаменателе встретятся одинаковые множители с переменной, сокращать их нельзя.

Пример 1

Преобразуем неравенство указанным выше способом:

(обратите внимание, мы избавились от минуса в числителе и поменяли знак неравенства).

Поскольку выражение 2 х + 2 в любом случае будет больше нуля, мы можем смело его исключить из неравенства.

(2 х — 2) × (2 х — 1/2) × (2 х — 3) > 0

Пример 2

Обозначим 3 х через новую переменную y:

3 х = y, при условии что 3 х > 0.

Применим метод интервалов и получим:

Вернем на место нашу старую переменную:

Однородные показательные неравенства

Однородными называются такие показательные неравенства, где в каждом слагаемом сумма степеней одинакова.

Иногда такие выражения бывают очень длинными и запутанными, но не стоит этого пугаться. Практически все неравенства с однородными показательными функциями решаются по одному принципу: стараемся упростить выражение, разделив его на одночлен, а затем при необходимости делаем замену переменных.

Пример 1

4 х — 2 × 5 2х — 2 х × 5 х > 0

2 × 2 х — 2 × 5 2х — 2 х × 5 х > 0

В левой части неравенства мы видим однородные функции относительно 2 х и 5 х . Следовательно, можно разделить обе части на 2 2х или 5 2х . Выберем 5 2х , т. е. 25 х . В итоге у нас получится:

Если обозначить (2/5) х новой переменной y, получим квадратное неравенство:

Неравенства, решаемые графическим методом

Этот метод решения показательных неравенств — самый наглядный, и для многих он может показаться самым простым. Нужно лишь построить графики функций, заданных в левой и правой части выражения, а затем посмотреть, в какой точке они пересекаются. Если бы мы имели дело с уравнением, эта точка стала бы корнем.

Но поскольку мы рассматриваем неравенства, нужно будет выделить искомую область. Для неравенства f(x) > g(x) это будет та область, где график функции f(x) находится выше.

Пример 1

2 х х и 3 — х, а также точка их пересечения.

Очевидно, что точкой пересечения является х = 1, при этом график функции 2 х ниже в области от -∞ до 1.

Пример 2

Начертим графики этих двух функций, чтобы найти точку пересечения.

Искомой точкой будет х = -1, а областью, где функция (1/2) х находится выше — диапазон от -∞ до -1.

Показательные уравнения и неравенства

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению показательных уравнений и неравенств. В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике «Методическая копилка репетитора по физике и математике» в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств, как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией.

Основные свойства показательной функции y = a x :

Свойствоa > 10 только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

0,\, b>0: \\ a^0 = 1, 1^x = 1; \\ a^<\frac>=\sqrt[n] \, (k\in Z,\, n\in N);\\ a^ <-x>= \frac<1>; \\ a^x\cdot a^y = a^; \\ \frac=a^; \\ (a^x)^y = a^; \\ a^x\cdot b^x = (ab)^x; \\ \frac=\left(\frac\right)^x.\\ \end> \]» title=»Rendered by QuickLaTeX.com»/>

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

0. \]» title=»Rendered by QuickLaTeX.com»/>

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x.

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x-2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f(x) > a g(x) равносильно неравенству того же смысла: f(x) > g(x). Если 0 f(x) > a g(x) равносильно неравенству противоположного смысла: f(x) 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t:

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

Воспользуемся заменой переменной:

Исходное уравнение тогда принимает вид:

Итак, неравенству удовлетворяют значения t, находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Поскольку основание степени в данном случае оказалось меньше единицы, но больше нуля, равносильным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательный ответ:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x+2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x+2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x+2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Показательные уравнения и неравенства способы из решения

Из предложенных тем я выбрала: «Методы решения показательных уравнений и неравенств», так как она наиболее актуальна не только для меня, но и для детей моего возраста. В связи с приближающимися экзаменами, данный проект так же поможет мне при решении заданий из ЕГЭ.

В данной работе исследуются разные способы решений показательных уравнений и неравенств.

В процессе выполнения проекта я приобрела навыки проектной деятельности, развила коммуникативные и аналитические способности, а также навыки самостоятельного поиска необходимого материала с помощью учебной и художественной литературы и интернет­-источников, более того получила знания как по математики, так и по истории.

Для достижения цели исследовательской работы необходимо было решить следующие задачи:

— осваивание математических знаний и умений, необходимых для изучения школьных естественнонаучных дисциплин на базовом уровне.

-изучить различные методы решения показательных уравнений и неравенств.

— развитие логического мышления и алгоритмической культуры;

Обычно математику считают прямой противоположностью поэзии. Однако математика и поэзия — ближайшие родственники, ведь и то и другое — работа воображения.
Томас Хилл

Определенно, чтобы понять и научиться решать любые математические задания, мало просто знать все многочисленные формулы и свойства, которыми богата данная наука. Если не подходить к заданию творчески, широко и открыто мыслить, то легко попадешь «в тупик», что может привести не только к разочарованию в науке, но и в самом себе. Математика как игра привлекательна свое содержательностью, сложностью и неожиданностью результатов. Так же для овладения почти любой современной профессии требуются математические познания. Строгое и абстрактное мышление, необходимое в реальной действительности, легче развить, занимаясь математикой, поскольку эта наука строга и абстрактна. Именно поэтому, на примере решения показательных уравнений и неравенств, я хочу показать, что данный процесс может не только увлечь вас, но и так же заставить ваш мозг работать куда продуктивнее.

История Показательных уравнений

Термин «показатель» для степени ввел в 1553 г. немецкий математик (сначала монах, а затем − профессор) Михаэль Штифель (1487-1567). По-немецки показатель − Exponent: «выставлять напоказ». Штифель же ввел дробные и нулевой показатели степени. Само обозначение ax для натуральных показателей степени ввел Рене Декарт (1637 г.), а свободно обращаться с такими же дробными и отрицательными показателями стал с 1676 г. сэр Исаак Ньютон.
Степени с произвольными действительными показателями, без всякого общего определения, рассматривали и Готфрид Вильгельм Лейбниц, и Иоганн Бернулли; в 1679 г. Лейбниц ввел понятия экспоненциальной (т.е., по-русски, показательной) функции для зависимости y=ax и экспоненциальной кривой для графика этой функции.

Уравнение, которое содержит неизвестное в показателе степени, называется показательным уравнением.

Самое простое показательное уравнение имеет вид:

Показательные уравнения путём алгебраических преобразований приводят к стандартным уравнениям, которые решаются, используя следующие методы:

  • метод приведения к одному основанию;
  • метод введения новых переменных;
  • метод вынесения общего множителя за скобки;
  • метод почленного деления;
  • метод группировки;
  • метод оценки.

Метод приведения к одному основанию

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т. е. уравнение надо попытаться свести к виду:

Представим правую часть в виде 3 log 3 7 x+1 3 2x-1 = 3 log 3 7 x+1 2x-1= log 3 7 x+1 2x-1=x log 3 7 1\AppData\Local\Temp\msohtmlclip1\01\clip_image005.png» /> + log 3 7 x(2- log 3 7 1\AppData\Local\Temp\msohtmlclip1\01\clip_image005.png» /> )= log 3 7 x= 1+ log 3 7 2- log 3 7 x= log 3 3+ log 3 7 log 3 3 2 — log 3 7 x= log 3 21 log 3 9 7 x= log 9 7 21 ≈12.1144 Ответ: 12.1144 4 x 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image012.png» /> — 2 x 2 Обозначим t= 2 x 2 t 2 t 1 t 2 Так как -1 2 x 2 x 2

Из первого уравнения совокупности находим x1 = — 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image019.png» /> ,x2= 1 2 x — 1= x — 3 +2 x — 3= x — 3 x — 3= x — 3, если x ≥3 x — 3=- x +3, если x 0∙ x =0, если x ≥3 2 x =6, x =3, если x Ответ: — 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image025.png» /> ∪ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.png» /> 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image027.png» /> ∪ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.png» /> 3; +∞ 22х·2– 7·2х·5х+52х·5=0 /52х≠ 0
2· 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> 2х– 7· 2 5 Пусть 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х =t, t>0
2t2-7t+5=0
D=b2-4ac=49-4·2·5=9
t1=1, t2= 5 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image030.png» />
2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х=1, 2 5 1\AppData\Local\Temp\msohtmlclip1\01\clip_image029.png» /> х = 5 2 3·22х+ 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х+1– 6·4х+1= — 1 3 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х+1+ 1 3 1 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.png» /> ·9х·9+ 1 3 31,5= 21· 4 9 4 9 1\AppData\Local\Temp\msohtmlclip1\01\clip_image032.png» /> х= 3 2 2 3 1\AppData\Local\Temp\msohtmlclip1\01\clip_image034.png» /> 2х= 2 3 ( 5 ) 2+4+6+. +2 x 1\AppData\Local\Temp\msohtmlclip1\01\clip_image035.png» /> = 5 45 1 2 Sn =n( a 1 + a n 2 x 1+ x 2 1\AppData\Local\Temp\msohtmlclip1\01\clip_image038.png» /> =45 2 x — 3 ≥ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image040.png» /> 4+ 1 6- 2 x — 3 Пусть 2 x — 3 t ≥ 1\AppData\Local\Temp\msohtmlclip1\01\clip_image043.png» /> 4+ 1 6- t 4+ 1 6- t 1\AppData\Local\Temp\msohtmlclip1\01\clip_image045.png» /> – t ≤ t 2 — 10 t +25 6- t ≤ (t-5) 2 6-t ≤ t=5, t > 1\AppData\Local\Temp\msohtmlclip1\01\clip_image049.png» /> 6. Отсюда 2 x — 3 1\AppData\Local\Temp\msohtmlclip1\01\clip_image042.png» /> =5 и 2 x — 3 > Пусть 2 x Из уравнения a-3 a-3=5 a-3=-5 a=8 a=-2 Подставим вместо a= 2 x 2 x =8 2 x =-2 Модуль a — 3 Для решения неравенств a — 3 > a — 3 > 1\AppData\Local\Temp\msohtmlclip1\01\clip_image056.png» /> 6 получаем a 1\AppData\Local\Temp\msohtmlclip1\01\clip_image057.png» /> -3 или a > 2 x 2 x >9 2 x > 2 log 2 9 x > log 2 9 Ответ: <3>∪ ( log 2 9 2 (3 2x + 2 x ∙ 3 x+1 + 3 0 ) > 3 (4 x — 2 x ∙ 3 x+1 + log 3 2) 3 2x + 2 x ∙ 3 x +1> log 2 3 (4 x — 2 x ∙ 3 x+1 + log 3 2) 3 2x + 2 x ∙ 3 x +1> (4 x — 2 x ∙ 3 x+1 + log 3 2)∙ log 2 3 3 2x + 2 x ∙ 3 x +1> (4 x — 2 x ∙ 3 x+1 )∙ log 2 3 +1 3 2x + 2 x ∙ 3 x > (4 x — 2 x ∙ 3 x+1 )∙ log 2 3 Поделим каждое слагаемое неравенства на ( 2 x ∙ 3 x ) 3 2 x +1> 2 3 x — 3 ∙ log 2 3 Обозначим: 3 2 x 1\AppData\Local\Temp\msohtmlclip1\01\clip_image069.png» /> =y, где y > y+1 > 1 y — 3 ∙ log 2 3 y 2 +y> 1-3y ∙ log 2 3 y 2 +y- 1-3y ∙ log 2 3 >0 y 2 +y — log 2 3+3y log 2 3 >0 y 2 + 3 log 2 3 +1 y- log 2 3 >0 y 2 + 3 log 2 3 +1 y- log 2 3=0 D = 3 log 2 3 +1 1\AppData\Local\Temp\msohtmlclip1\01\clip_image076.png» /> 2 + 1\AppData\Local\Temp\msohtmlclip1\01\clip_image077.png» /> 4 log 2 3= 9 log 2 3 2 +10 log 2 3 +1 D >0 y = — 3 log 2 3 +1 ± 9 log 2 3 2 +10 log 2 3 +1 2 В связи с тем, что log 2 3 >0 1\AppData\Local\Temp\msohtmlclip1\01\clip_image081.png» /> , то и D > 3 log 2 3 +1 y = — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 Отметим точку y на оси, y >0 y Î — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ Из этого следует, что x Î log 3 2 — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ Ответ: x Î log 3 2 — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2 ;+∞ — 3 log 2 3 +1 + 9 log 2 3 2 +10 log 2 3 +1 2

источники:

http://yourtutor.info/%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B7%D0%B0%D0%B4%D0%B0%D1%87-%D1%813-%D0%B5%D0%B3%D1%8D-%D0%BF%D0%BE-%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B5-%D0%BF%D0%BE%D0%BA

http://school-science.ru/8/7/41416