Показательные уравнения и неравенства вариант 21

Показательные уравнения и неравенства (стр. 3 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3

«Показательные уравнения и неравенства» Вариант 18

«Показательные уравнения и неравенства» Вариант 19

«Показательные уравнения и неравенства» Вариант 20

«Показательные уравнения и неравенства» Вариант 21

«Показательные уравнения и неравенства» Вариант 22

«Показательные уравнения и неравенства» Вариант 23

«Показательные уравнения и неравенства» Вариант 24

«Показательные уравнения и неравенства» Вариант 25

«Показательные уравнения и неравенства» Вариант 26

Показательные уравнения и неравенства с примерами решения

Содержание:

Рассмотрим уравнения, в которых переменная (неизвестное) находится в показателе степени. Например:

Уравнения такого вида принято называть показательными.

Решении показательных уравнений

При решении показательных уравнений нам будет полезно следствие из теоремы о свойствах показательной функции.

Пусть

Каждому значению показательной функции соответствует единственный показатель s.

Пример:

Решение:

Согласно следствию из равенства двух степеней с одинаковым основанием 3 следует равенство их показателей. Таким образом, данное уравнение равносильно уравнению

Пример:

Решение:

а) Данное уравнение равносильно (поясните почему) уравнению

Если степени с основанием 3 равны, то равны и их показатели:

Решив это уравнение, получим

Ответ:

При решении каждого уравнения из примера 2 сначала обе части уравнения представили в виде степени с одним и тем же основанием, а затем записали равенство показателей этих степеней.

Пример:

Решение:

а) Данное уравнение равносильно уравнению

Решая его, получаем:

Так как две степени с одинаковым основанием 2 равны, то равны и их показатели, т. е. откуда находим

б) Разделив обе части уравнения на получим уравнение равносильное данному. Решив его, получим

Ответ:

При решении примера 3 а) левую часть уравнения разложили на множители. Причем за скобку вынесли такой множитель, что в скобках осталось числовое выражение, не содержащее переменной.

Пример:

Решить уравнение

Решение:

Обозначим тогда

Таким образом, из данного уравнения получаем

откуда находим:

Итак, с учетом обозначения имеем:

При решении примера 4 был использован метод введения новой переменной, который позволил свести данное уравнение к квадратному относительно этой переменной.

Пример:

Решить уравнение

Решение:

Можно заметить, что 2 — корень данного уравнения. Других корней уравнение не имеет, так как функция, стоящая в левой части уравнения, возрастающая, а функция, стоящая в правой части уравнения, убывающая. Поэтому уравнение имеет не более одного корня (см. теорему из п. 1.14).

Пример:

Решить уравнение

Решение:

Пример:

При каком значении а корнем уравнения является число, равное 2?

Решение:

Поскольку х = 2 — корень, то верно равенство

Решив это уравнение, найдем

Ответ: при

Показательные уравнения и их системы

Показательным уравнением называется уравнение, в ко тором неизвестное входит в показатель степени. При решении показательных уравнений полезно использовать следующие тождества:

Приведем методы решения некоторых типов показательных уравнений.

1 Приведение к одному основанию.

Метод основан на следующем свойстве степеней: если две степени равны и равны их основания, то равны и их показатели, т.е. уравнения надо попытаться привести к виду . Отсюда

Пример №1

Решите уравнение

Решение:

Заметим, что и перепишем наше уравнение в виде

Применив тождество (1), получим Зх — 7 = -7х + 3, х = 1.

Пример №2

Решить уравнение

Решение:

Переходя к основанию степени 2, получим:

Согласно тождеству (2), имеем

Последнее уравнение равносильно уравнению 4х-19 = 2,5х.

2 Введение новой переменной.

Пример №3

Решить уравнение

Решение:

Применив тождество 2, перепишем уравнение как

Введем новую переменную: Получим уравнение

которое имеет корни Однако кореньне удовлетворяет условию Значит,

Пример №4

Решить уравнение

Решение:

Разделив обе части уравнения на получим:

последнее уравнение запишется так:

Решая уравнение, найдем

Значение не удовлетворяет условию Следовательно,

Пример №5

Решить уравнение

Решение:

Заметим что Значит

Перепишем уравнение в виде

Обозначим Получим

Получим

Корнями данного уравнения будут

Следовательно,

III Вынесение общего множителя за скобку.

Пример №6

Решить уравнение

Решение:

После вынесения за скобку в левой части , а в правой , получим Разделим обе части уравнения на получим

Системы простейших показательных уравнений

Пример №7

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей

системе :Отсюда получим систему

Очевидно, что последняя система имеет решение

Пример №8

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей системе: Последняя система, в свою очередь, равносильна системе:

Умножив второе уравнение этой системы на (-2) и сложив с первым, получим уравнение —9х=-4. Отсюда, найдем Подставив полученное значение во второе уравнение, получим

Пример №9

Решите систему уравнений:

Решение:

Сделаем замену: Тогда наша система примет вид:

Очевидно, что эта система уравнений имеет решение

Тогда получим уравнения

Приближенное решение уравнений

Пусть многочлен f(х) на концах отрезка [a,b] принимает значения разных знаков, то есть . Тогда внутри этого отрезка существует хотя бы одно решение уравнения Дх)=0. Это означает, что существует такое (читается как «кси»), что

Это утверждение проиллюстрировано на следующем чертеже.

Рассмотрим отрезок содержащий лишь один корень уравнения .

Метод последовательного деления отрезка пополам заключается в последовательном разделении отрезка [a, b] пополам до тех пор, пока длина полученного отрезка не будет меньше заданной точности

  1. вычисляется значение f(х) выражения
  2. отрезок делится пополам, то есть вычисляется значение
  3. вычисляется значение выражения f(х) в точке
  4. проверяется условие
  5. если это условие выполняется, то в качестве левого конца нового отрезка выбирается середина предыдущего отрезка, то есть полагается, что (левый конец отрезка переходит в середину);
  6. если это условие не выполняется, то правый конец нового отрезка переходит в середину, то есть полагается, что b=x;
  7. для нового отрезка проверяется условие
  8. если это условие выполняется , то вычисления заканчиваются. При этом в качестве приближенного решения выбирается последнее вычисленное значение х. Если это условие не выполняется, то, переходя к пункту 2 этого алгоритма, вычисления продолжаются.

Метод последовательного деления пополам проиллюстрирован на этом чертеже:

Для нахождения интервала, содержащего корень уравнения вычисляются значения

Оказывается, что для корня данного уравнения выполнено неравенство. Значит, данное уравнение имеет хотя бы один корень, принадлежащий интервалу (-1 -А; 1+А). Для приближенного вычисления данного корня найдем целые и удовлетворяющие неравенству

Пример №10

Найдите интервал, содержащий корень уравнения

Решение:

Поделив обе части уравнения на 2 , получим,

Так как, для нового уравнения

Значит, в интервале, уравнение имеет хотя бы один корень. В то же время уравнение при не имеет ни одного корня, так как,

выполняется. Значит, корень уравнения лежит в (-2,5; 0). Для уточнения этого интервала положим Для проверим выполнение условия

Значит, уравнение имеет корень, принадлежащий интервалу (-1; 0).

Нахождение приближенного корня с заданной точностью

Исходя из вышесказанного, заключаем, что если выполнено неравенство корень уравнения принадлежит интервалу

ПустьЕсли приближенный

корень уравнения с точностью . Если то корень лежит в интервале если то корень лежит в интервале . Продолжим процесс до нахождения приближенного значения корня с заданной точностью.

Пример №11

Найдите приближенное значение корня уравнения с заданной точностью

Решение:

Из предыдущего примера нам известно, что корень лежит в интервале

(-1; 0). Из того, что заключаем, что корень лежит в интервале (-0,5; 0).

Так как, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если

Пусть

Изображения графиков показательной функции подсказывают это свойство. На рисунке 27 видно, что при а > 1 большему значению функции соответствует большее значение аргумента. А на рисунке 30 видно, что при 0

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Материалы для проведения зачетов по темам «Показательные уравнения и неравенства», «Логарифмические уравнения и неравенства»

Разделы: Математика

Главная цель при работе с предлагаемыми билетами:

  1. научить учащихся видеть общее в решении соответствующих уравнений и неравенств и различие при записи ответов;
  2. экономия времени;
  3. умение ориентироваться в содержании данного материала.

Если первая цель не вызывает вопросов, то экономия времени сразу не чувствуется. Хотя именно нехватка времени и сказалась на структуре билетов. Они составлены по единому принципу. Уравнения и неравенства расположены так, чтобы легче было установить соответствие между ними.

И не смотря на рекомендацию учителя: решать уравнение и сразу же за ним оформлять решение соответствующего неравенства, половина учеников предпочитала сначала решить все уравнения из первого столбца, а потом уж приниматься за решение неравенств. При записи ответа обращать внимание на то, что из-за отсутствия корней у уравнения не следует, что и у неравенства не будет решений.

При сдаче второго зачёта уже таких проблем не возникало, так как у многих сформировалось умение “видеть” и выработались определённые навыки.

В каждом билете материал подобран так, что, кроме, уравнений (неравенств), решаемых по определению и свойствам, даны уравнения (неравенства), решаемые разложением на множители; заменой переменных. И, естественно, повторяется решение квадратных уравнений и неравенств, второй степени.

В билетах всего 26 заданий. Поэтому ученикам предлагались такие нормы:“5” – 26 зад. , “4” – 19–25 зад. , “3” – 14–18 зад. , “2” – менее 14 зад.

Ученик, претендующий на оценку “5”, должен успеть решить за урок все уравнения и неравенства. Первые четырнадцать заданий – это обязательный минимум. Зачёт, конечно, можно и пересдать. Но желательно, чтобы укладывались в отведённое время.

При подготовке к ЕГЭ, когда навыки решения уравнений (неравенств) будут уже сформированы, задания могут быть заменены. Например, такие:

  1. указать сумму (произведение) корней уравнения;
  2. указать наименьший (наибольший) корень уравнения;
  3. найти наименьшее (наибольшее) целое решение неравенства;
  4. найти сумму (произведение) целых решений неравенства.

Конечно, каждый учитель может сам дополнить этот список. В зависимости от класса возникает необходимость на одни задания обратить больше внимания, на другие – меньше.

Билеты могут быть использованы как для зачётов, так и для самостоятельных работ. Каждый билет состоит из двух блоков: базовый уровень (1 уровень) и повышенный (2 уровень). Блок состоит из двух частей: уравнения и неравенства, которые разделены на два столбца, чтобы ученику легче было устанавливать соответствие между ними.

Ниже приведено по шесть вариантов билетов по каждой теме. К ним даны ответы.

Приложение 1. Логарифмические уравнения и неравенства.

Приложение 2. Показательные уравнения и неравенства.

Приложение 3. Ответы к билетам по алгебре и началам анализа.


источники:

http://www.evkova.org/pokazatelnyie-uravneniya-i-neravenstva

http://urok.1sept.ru/articles/596730