Показательные уравнения примеры и ответы

Показательные уравнения

О чем эта статья:

6 класс, 7 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательного уравнения

Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.

Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:

Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.

С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a

Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.

Показательные уравнения и неравенства с примерами решения

Содержание:

Рассмотрим уравнения, в которых переменная (неизвестное) находится в показателе степени. Например:

Уравнения такого вида принято называть показательными.

Решении показательных уравнений

При решении показательных уравнений нам будет полезно следствие из теоремы о свойствах показательной функции.

Пусть

Каждому значению показательной функции соответствует единственный показатель s.

Пример:

Решение:

Согласно следствию из равенства двух степеней с одинаковым основанием 3 следует равенство их показателей. Таким образом, данное уравнение равносильно уравнению

Пример:

Решение:

а) Данное уравнение равносильно (поясните почему) уравнению

Если степени с основанием 3 равны, то равны и их показатели:

Решив это уравнение, получим

Ответ:

При решении каждого уравнения из примера 2 сначала обе части уравнения представили в виде степени с одним и тем же основанием, а затем записали равенство показателей этих степеней.

Пример:

Решение:

а) Данное уравнение равносильно уравнению

Решая его, получаем:

Так как две степени с одинаковым основанием 2 равны, то равны и их показатели, т. е. откуда находим

б) Разделив обе части уравнения на получим уравнение равносильное данному. Решив его, получим

Ответ:

При решении примера 3 а) левую часть уравнения разложили на множители. Причем за скобку вынесли такой множитель, что в скобках осталось числовое выражение, не содержащее переменной.

Пример:

Решить уравнение

Решение:

Обозначим тогда

Таким образом, из данного уравнения получаем

откуда находим:

Итак, с учетом обозначения имеем:

При решении примера 4 был использован метод введения новой переменной, который позволил свести данное уравнение к квадратному относительно этой переменной.

Пример:

Решить уравнение

Решение:

Можно заметить, что 2 — корень данного уравнения. Других корней уравнение не имеет, так как функция, стоящая в левой части уравнения, возрастающая, а функция, стоящая в правой части уравнения, убывающая. Поэтому уравнение имеет не более одного корня (см. теорему из п. 1.14).

Пример:

Решить уравнение

Решение:

Пример:

При каком значении а корнем уравнения является число, равное 2?

Решение:

Поскольку х = 2 — корень, то верно равенство

Решив это уравнение, найдем

Ответ: при

Показательные уравнения и их системы

Показательным уравнением называется уравнение, в ко тором неизвестное входит в показатель степени. При решении показательных уравнений полезно использовать следующие тождества:

Приведем методы решения некоторых типов показательных уравнений.

1 Приведение к одному основанию.

Метод основан на следующем свойстве степеней: если две степени равны и равны их основания, то равны и их показатели, т.е. уравнения надо попытаться привести к виду . Отсюда

Пример №1

Решите уравнение

Решение:

Заметим, что и перепишем наше уравнение в виде

Применив тождество (1), получим Зх — 7 = -7х + 3, х = 1.

Пример №2

Решить уравнение

Решение:

Переходя к основанию степени 2, получим:

Согласно тождеству (2), имеем

Последнее уравнение равносильно уравнению 4х-19 = 2,5х.

2 Введение новой переменной.

Пример №3

Решить уравнение

Решение:

Применив тождество 2, перепишем уравнение как

Введем новую переменную: Получим уравнение

которое имеет корни Однако кореньне удовлетворяет условию Значит,

Пример №4

Решить уравнение

Решение:

Разделив обе части уравнения на получим:

последнее уравнение запишется так:

Решая уравнение, найдем

Значение не удовлетворяет условию Следовательно,

Пример №5

Решить уравнение

Решение:

Заметим что Значит

Перепишем уравнение в виде

Обозначим Получим

Получим

Корнями данного уравнения будут

Следовательно,

III Вынесение общего множителя за скобку.

Пример №6

Решить уравнение

Решение:

После вынесения за скобку в левой части , а в правой , получим Разделим обе части уравнения на получим

Системы простейших показательных уравнений

Пример №7

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей

системе :Отсюда получим систему

Очевидно, что последняя система имеет решение

Пример №8

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей системе: Последняя система, в свою очередь, равносильна системе:

Умножив второе уравнение этой системы на (-2) и сложив с первым, получим уравнение —9х=-4. Отсюда, найдем Подставив полученное значение во второе уравнение, получим

Пример №9

Решите систему уравнений:

Решение:

Сделаем замену: Тогда наша система примет вид:

Очевидно, что эта система уравнений имеет решение

Тогда получим уравнения

Приближенное решение уравнений

Пусть многочлен f(х) на концах отрезка [a,b] принимает значения разных знаков, то есть . Тогда внутри этого отрезка существует хотя бы одно решение уравнения Дх)=0. Это означает, что существует такое (читается как «кси»), что

Это утверждение проиллюстрировано на следующем чертеже.

Рассмотрим отрезок содержащий лишь один корень уравнения .

Метод последовательного деления отрезка пополам заключается в последовательном разделении отрезка [a, b] пополам до тех пор, пока длина полученного отрезка не будет меньше заданной точности

  1. вычисляется значение f(х) выражения
  2. отрезок делится пополам, то есть вычисляется значение
  3. вычисляется значение выражения f(х) в точке
  4. проверяется условие
  5. если это условие выполняется, то в качестве левого конца нового отрезка выбирается середина предыдущего отрезка, то есть полагается, что (левый конец отрезка переходит в середину);
  6. если это условие не выполняется, то правый конец нового отрезка переходит в середину, то есть полагается, что b=x;
  7. для нового отрезка проверяется условие
  8. если это условие выполняется , то вычисления заканчиваются. При этом в качестве приближенного решения выбирается последнее вычисленное значение х. Если это условие не выполняется, то, переходя к пункту 2 этого алгоритма, вычисления продолжаются.

Метод последовательного деления пополам проиллюстрирован на этом чертеже:

Для нахождения интервала, содержащего корень уравнения вычисляются значения

Оказывается, что для корня данного уравнения выполнено неравенство. Значит, данное уравнение имеет хотя бы один корень, принадлежащий интервалу (-1 -А; 1+А). Для приближенного вычисления данного корня найдем целые и удовлетворяющие неравенству

Пример №10

Найдите интервал, содержащий корень уравнения

Решение:

Поделив обе части уравнения на 2 , получим,

Так как, для нового уравнения

Значит, в интервале, уравнение имеет хотя бы один корень. В то же время уравнение при не имеет ни одного корня, так как,

выполняется. Значит, корень уравнения лежит в (-2,5; 0). Для уточнения этого интервала положим Для проверим выполнение условия

Значит, уравнение имеет корень, принадлежащий интервалу (-1; 0).

Нахождение приближенного корня с заданной точностью

Исходя из вышесказанного, заключаем, что если выполнено неравенство корень уравнения принадлежит интервалу

ПустьЕсли приближенный

корень уравнения с точностью . Если то корень лежит в интервале если то корень лежит в интервале . Продолжим процесс до нахождения приближенного значения корня с заданной точностью.

Пример №11

Найдите приближенное значение корня уравнения с заданной точностью

Решение:

Из предыдущего примера нам известно, что корень лежит в интервале

(-1; 0). Из того, что заключаем, что корень лежит в интервале (-0,5; 0).

Так как, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если

Пусть

Изображения графиков показательной функции подсказывают это свойство. На рисунке 27 видно, что при а > 1 большему значению функции соответствует большее значение аргумента. А на рисунке 30 видно, что при 0

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Показательные уравнения в математике с примерами решения и образцами выполнения

Простейшее показательное уравнение — это уравнение вида = b. Пусть основание а>0 и отлично от 1. Так как функция у = строго монотонна, то каждое свое значение она принимает ровно один раз. Это означает, что уравнение = b при b>0 имеет одно решение, которое по определению логарифма равно log0 b. Если 0, то уравнение = b корней не имеет, так как всегда больше нуля. Если число b записано в виде ас, т. е. если уравнение представлено в виде = ас, то оно имеет один корень х = с.

Сформулируем общий результат о решении простейшего показательного уравнения (схема XI).

Теорема:

Пусть а > 0 и а ≠ 1. Уравнение равносильно уравнению f (x) = g (х).

Доказательство:

Докажем, что если то f(x) = g(x). Действительно, так как показательная функция строго монотонна, то из равенства ее значений ac = ad следует равенство показателей c = d. Обратно: если f(x) = g(x), то .

Примеры:

Простейшее логарифмическое уравнение — это уравнение вида logax=b. Оно имеет единственное решение х — а при любом b.

Сформулируем общий результат о решении простейшего логарифмического уравнения (схема XI).

Теорема:

Уравнение ioga f (х) = loga g (х) равносильно уравнению f(x)=g(x) при ограничениях f (х)> 0, g(x)>0.

Доказательство:

Пусть х — решение уравнения

Тогда определены логарифмы чисел f (х) и g (х), т. е. эти числа должны быть больше нуля. Потенцируя равенство получаем равенство f(x) = g (x). Обратно, пусть х — решение уравнения f (х) = g (х), причем g(x)>0 и f (х)> 0. Тогда равенство f.

Примеры:

Мы решили уравнение х— 1 = 5 — х, а затем проверили, удовлетворяет ли решение условиям х— 1 >0 и 5 — х>0. Заметим, что если f (x) = g (х) и f (х)>0, то тогда и g (x)>0, т. е. из двух неравенств достаточно проверить только одно.

Показательные уравнения справочные сведения

Показательная функция где определена на , а множество ее значений — множество всех положительных чисел.

2.Для любых и при любых значениях и ну верны равенства (основные свойства степени):

3. Простейшее показательное уравнение

не имеет корней при и имеет единственный корень при

В частности, уравнение имеет единственный корень

4.Уравнение

5.Уравнение

равносильно каждому из уравнений

Примеры с решениями

Пример:

Решить уравнение

Решение:

Данное уравнение равносильно каждому из уравнений откуда

Ответ.

Пример:

Решить уравнение

Решение:

Это уравнение равносильно каждому из уравнений:

откуда находим

Ответ.

Пример:

Решение:

Пусть тогда уравнение примет вид

Это уравнение равносильно каждому из уравнений: откуда

Ответ.

Пример:

Решение:

Полагая получаем уравнение или откуда находим

Следовательно, исходное уравнение равносильно совокупности уравнений Первое из них не имеет корней, второе имеет единственный корень

Ответ.

Пример:

Решение:

Запишем данное уравнение в виде

и заметим, что левая часть уравнения (2) — однородный многочлен степени от и где (сумма степеней и в каждом члене этого многочлена равна двум).

Разделив обе части уравнения (2) на и полагая получим уравнение имеющее корни Исходное уравнение (1) равносильно совокупности уравнений откуда находим

Ответ.

Пример:

Решение:

Воспользуемся равенством и положим Тогда уравнение примет вид или откуда Исходное уравнение равносильно совокупности уравнении

откуда

Ответ,

Пример:

Решение:

Число 2 является корнем этого уравнения. Докажем, что уравнение не имеет других корней. Так как каждая из функций является возрастающей, то и — также возрастающая функция. Поэтому при и при т. е. функция не принимает значение, равное 25, при Это означает, что — единственный корень уравнения.

Показательные неравенства

Простейшее показательное неравенство — это неравенство вида >b или 1 и b >0. Решением неравенства ≥ b является промежуток , т. е. все числа (схема XI).

Пусть а>1 и b ≤ 0. Решением неравенства ≥ b является множество всех вещественных чисел R.

Можно сказать, что неравенство типа >b мы решаем логарифмированием. При логарифмировании неравенств надо помнить два правила: 1) в обеих частях неравенства должны стоять положительные числа; 2) при логарифмировании по основанию а>1 знак неравенства сохраняется, если же 0 может стоять ≤ , ≥ . Аналогично показательному неравенству здесь также возможно много вариантов (схема XI). Логарифмическое неравенство решают потенцированием. При этом надо помнить два правила: 1) при переходе от выражения loga f (х) к выражению f (х) надо добавлять условие f (х)>0; 2) если а>1, то при потенцировании знак неравенства сохраняется; если же 0

4. Сначала учтем условия x 2 — 1>0 и x + 5>0. Решение этой системы неравенств изображено на рисунке 110. Затем потенцируем: x 2 — 1 ≤ x+5 ⇔ x 2 — х — 6 ≤ 0 ⇔ -2 ≤ x ≤ 3. Соединяя решения вместе, получим ответ: -2 ≤ х Введение новой неизвестной

Основной прием, с помощью которого решают показательные и логарифмические уравнения и неравенства,— это введение новой неизвестной. Поясним этот прием на ряде примеров.

1) Выражение показательных функций друг через друга.

Рассмотрим выражения . Все они могут быть алгебраически выражены друг через друга. Например, и т. д. Алгебраическая связь между различными степенями может быть осложнена добавлением в показателе степени постоянных слагаемых: Однако и сейчас несложно выразить эти выражения, например, через у1. Получим

К этому полезно напомнить связь между различными основаниями. Например, и т. п. Поэтому выражения

также нетрудно выразить через у1:

Если в уравнении или неравенстве встречается несколько показательных функций, то надо все их выразить через одну. Обычно после этого показательное уравнение или неравенство превращается в алгебраическое.

Делаем замену =у. Неравенство перепишем таким образом:

(мы умножили неравенство на у, что можно, так как

Так как > — 1 верно при всех х, то остается решить неравенство

Используя модуль перехода, легко связать эти выражения между собой:

Свойства логарифмов позволяют по-разному записать связи между выражениями. Например,

Если в уравнении или неравенстве встречается несколько логарифмических функций, то надо (если не удается избавиться от логарифмов потенцированием) выразить их через одну и свести логарифмическое уравнение или неравенство к алгебраическому.

Делаем замену lg х = у. Получаем уравнение относительно у:

Возвращаясь к неизвестной х, получим lg х = 2, х=100; lgx = 3, х= 1000.

Перейдем к основанию 3. Получим

заменив log3x на у, получим

Возвpащаясь к неизвестной х, получим log3x = 2, x = 9; log3x =—2,

Ответ:

Логарифмируя, получим равносильное данному неравенство (lg x —2) 1g x ≤ 3.

Положим lg х = у. Получим неравенство (у — 2)y ≤ З ⇔

Возвращаясь к неизвестной х, получим — l ≤ lg x ≤ 3 ⇔ x 1000

Ответ: ≤ x ≤ 1000, или в другой записи [ ; 1 ООО].

Использование свойства монотонности функций при решении показательных уравнений

Монотонность функций часто позволяет определить число корней уравнения, а иногда и найти их значения. Рассмотрим примеры решения уравнений.

В левой части уравнения имеем возрастающую функцию, а в правой — убывающую. Следовательно, уравнение не может иметь более одного корня (рис. 111). Один корень можно угадать: х=1. Это число и является окончательным ответом.

Одно решение х=1 легко найти подбором. Докажем, что других корней нет. Перепишем уравнение так:

В правой части последнего уравнения сумма убывающих функций т. е. значение у = 1 эта сумма может принять только один раз.

3. Сколько корней имеет уравнение = ах?

Изобразим схематически графики функций у = и у = ах (рис. 112). При а 0 графики могут не пересекаться, касаться друг друга или пересекаться в двух точках. Граничным значением параметра а, при котором происходит разделение основных случаев — две точки пересечения или ни одной, является значение а, при котором прямая у = ах является касательной к графику функции у = некоторой точке. Найдем это значение а. Пусть касание произошло в точке хо, тогда производная функция у = в этой точке равна а. Поэтому получаем уравнение = а, т. е. x0 = ln а. Точка с абсциссой х0 = ln а должна лежать как на графике функции у=, так и на прямой у = ах. Получаем ° = ах, т. е. а = а ln а, так как а ≠ 0, то ln а= 1 и а = е.

Ответ: при 0 ≤ а е два корня, при а = е один корень, при корней нет.

Этот материал взят со страницы решения задач с примерами по всем темам предмета математика:

Возможно вам будут полезны эти страницы:

Показательные уравнения и примеры решения

Определение. Уравнение называется показательным, если неизвестная входит в показатель степени.

Рассмотрим простейшие приемы решения показательных уравнений на отдельных примерах.

1. Решить уравнение

Представим левую и правую части уравнения в виде степеней, имеющих одинаковые основания:

Отсюда 3х = 2, или .

Мы здесь воспользовались следующей теоремой:

Если степени равны и основания равны, положительны и отличны от единицы, то равны и их показатели степеней.

Докажем эту теорему.

Пусть а > 1 и . Докажем, что в этом случае

Допустим противное тому, что требуется доказать, т. е. допустим, что х > у или что х

3. Решить уравнение

Преобразуя левую часть уравнения, получим:

Значит, данное показательное уравнение имеет два корня:

4. Решить уравнение

Примем за новую неизвестную выражение и обозначим это выражение буквой у. Тогда получим:

либо , либо

Из уравнения имеем х = 4.
Из уравнения имеем х = —2.

Итак, данное показательное уравнение имеет два корня: 4 и — 2.

5. Решить уравнение

Снова, обозначая и решая полученное квадратное уравнение, находим:

Таким образом, получим:

Как было указано при исследовании показательной функции, степень ни при каком х не может быть отрицательной, следовательно, первое из полученных уравнений не имеет корней. Из второго уравнения находим х = 0. Значит, первоначальное уравнение имеет лишь один корень, равный нулю.

6. Решить уравнение

Для решения этого уравнения применим графический метод. Построим на одной координатной плоскости (рис. 148) графики функций:

Тогда абсциссы точек пересечения этих линий, т. е. абсциссы точек А и В, будут корнями данного уравнения. Абсцисса точки В, равная числу 2, будет точным корнем данного уравнения, а абсцисса точки А, равная приближенно —1,7, будет его приближенным корнем. Других корней данное уравнение не имеет.

Сведения, изложенные в этой главе, окажутся полезными при изучении логарифмов, которым посвящена следующая глава.

Примем к сведению без доказательства еще следующую теорему:

Если а есть положительной число, отличное от единицы, а N — любое положительное число, то уравнение с неизвестным х имеет один и только один действительный корень (рациональный или иррациональный).

Примеры. Уравнение имеет единственный действительный корень, равный рациональному числу 5.

Уравнение имеет единственный действительный иррациональный корень, приближенное значение которого с точностью до 0,00001 равно 0,47712.

Итак, мы можем сделать следующие заключения:

  1. Выражение , где а>0, имеет при каждом действительном значении х одно и только одно действительное значение.
  2. Действия над выражениями вида , в которых х является любым действительным числом, можно выполнять по тем же правилам, по которым они выполняются над степенями с целым положительным показателем. Поэтому выражение при всяком действительном значении х также называется степенью (обобщенной).

Примеры зависимостей, выражающихся с помощью показательных функций.

1. (барометрическая формула):
—давление на уровне моря;
k —некоторая известная постоянная;
е —2,718;
h(м) —высота над уровнем моря;
р(ат) —давление на высоте А над уровнем моря.

Здесь h есть независимая переменная, или аргумент, а р есть зависимая переменная, или функция.

По этой формуле можно определять давление р по заданному значению h.

2. Если температура воздуха равна 20° С и тело в течение 20 минут охлаждается от 100 до 60°, то зависимость температуры Т охлаждающегося тела от времени t минут (в течение которого будет происходить охлаждение) выразится формулой

Здесь t есть аргумент, а Т—функция.

Пользуясь этой формулой, можно узнать, например, что через один час температура тела понизится до 30°.

Приведенные формулы выводятся в курсах высшей математики.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://www.evkova.org/pokazatelnyie-uravneniya-i-neravenstva

http://lfirmal.com/pokazatelnyie-uravneniya-primeryi-s-resheniem/