Полная система уравнений максвелла имеет вид ответ

Полная система уравнений Максвелла

Полная система уравнений Максвелла представляет собой систему дифференциальных или интегральных уравнений, решение которых позволяет определить характеристики электрического и магнитного поля в любой точке пространства в любой момент времени. Эти уравнения удовлетворяют динамическому принципу причинности или лапласовскому детерминизму.

Согласно этим уравнениям, если известно распределение зарядов в пространстве и заданы характеристики электрического и магнитного поля в начальный момент времени, а также заданы характеристики среды, то можно найти характеристики электрического и магнитного поля в любой момент времени в любой точке пространства.

Полная система уравнений Максвелла имеет вид, представленный в таблице:

Номер уравненияЗаконУравнение Максвелла в дифференциальной формеУравнение Максвелла в интегральной форме
Закон Био – Савара — Лапласа
Закон Фарадея для электромагнитной индукции
Вихревой характер магнитного поля
Теорема Остроградского — Гаусса
Определение вектора электрической индукции
Определение вектора индукции магнитного поля
Закон сохранения электрического заряда
Закон Ома для полной цепи

Дата добавления: 2017-06-02 ; просмотров: 735 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Полная система уравнений максвелла имеет вид ответ

Единая теория электрических и магнитных явлений. Система уравнений Максвелла

Итак, переменное магнитное поле вызывает появление вихревого электрического поля. Переменное электрическое поле вызывает появление магнитного поля. Взаимно порождаясь, они могут существовать независимо от источников заряда или токов, которые первоначально создали одно из них. В сумме это есть электромагнитное поле (ЭМП). Превращение одного поля в другое и распространение в пространстве есть способ существования ЭМП. Конкретные проявления ЭМП – радиоволны, свет, гамма-лучи и т.д.

В 1860 г. знаменитый английский физик Джеймс Клерк Максвелл создал единую теорию электрических и магнитных явлений, в которой он использовал понятие ток смещения, дал определение ЭМП и предсказал существование в свободном пространстве электромагнитного излучения, которое распространяется со скоростью света.

Теорию ЭМП Максвелл сформулировал в виде системы нескольких уравнений. В учении об электромагнетизме эти уравнения Максвелла играют такую же роль, как уравнения (или законы) Ньютона в механике.

1) Мы знаем теорему о циркуляции вектора напряжённости магнитного поля:

,

но: ; т.е. , тогда

,(7.3.1)

Это уравнение является обобщением закона Био–Савара–Лапласа и показывает, что циркуляция вектора по произвольному замкнутому контуру L равна сумме токов проводимости и токов смещения сквозь поверхность, натянутую на этот контур. Или другими словами, показывает связь между полным током и порождаемым им магнитным полем.

В дифференциальной форме это уравнение Максвелла выглядит так:

2) Рассматривая явление электромагнитной индукции, мы сделали вывод, что ЭДС индукции . Перейдем от вихревого электрического поля к магнитному:

,(7.3.2)

Это уравнение описывает явление электромагнитной индукции (закон Фарадея) и устанавливает количественную связь между электрическими и магнитными полями: переменное электрическое поле порождает переменное магнитное поле. В этом физический смысл уравнения.

В дифференциальной форме это уравнение выглядит так:

3) Ещё два уравнения выражают теорему Остроградского–Гаусса для электрического и магнитного полей (статических полей)

,(7.3.3)

Поток вектора электрического смещения через замкнутую поверхность S равен сумме зарядов внутри этой поверхности. Это уравнение показывает также, что силовые линии вектора и начинаются и заканчиваются на зарядах.

,(7.3.4)

Это уравнение выражает то свойство магнитного поля, что линии вектора магнитной индукции всегда замкнуты и что магнитных зарядов нет.

,(7.3.5)

5, 6, 7) Наконец надо помнить, что величины, входящие в эти четыре уравнения не независимы, и между ними существует связь:

,(7.3.6)
,(7.3.7)
,(7.3.8)

здесь σ – удельная проводимость, – плотность сторонних токов.

Эти уравнения называются уравнениями состояния или материальными уравнениями. Вид этих уравнений определяется электрическими и магнитными свойствами среды. В общем случае уравнения состояния очень сложны и нелинейны.

Уравнения (7.3.1 – 7.3.8) составляют полную систему уравнений Максвелла. Они являются наиболее общими для электрических и магнитных полей в покоящихся средах. Уравнения Максвелла – инвариантны относительно преобразований Лоренца. Физический смысл уравнений Максвелла в дифференциальной и интегральной формах полностью эквивалентен.

Таким образом, полная система уравнений Максвелла в дифференциальной и интегральной формах имеет вид:

;

– обобщенный закон Био–Савара–Лапласа;

; – закон Фарадея;

; – теорема Гаусса; – отсутствие магнитных зарядов;

, ,

Аудио-видео демонстрации по теме или смежным темам: 1. Солнечная корона. 2. Солнечная плазма.

Уравнения Максвелла

Вы будете перенаправлены на Автор24

Значение уравнений Максвелла

Уравнения Дж. Максвелла создают основу для предложенной им теории электромагнитных явлений, которая объяснила все известные в то время эмпирические факты, некоторые эффекты предсказала. Главным выводом теории Максвелла стало положение о существовании электромагнитных волн, которые распространяются со скоростью света.

Уравнения, предложенные Максвеллом, в электромагнетизме играют роль подобную роли законов Ньютона в классической механике. Они явились обобщением экспериментальных законов и продолжением идей ученых (Кулона, Ампера, Фарадея и др.) изучавших электромагнетизм до Максвелла.

Сам Максвелл предложил двадцать уравнений в дифференциальной форме с двадцатью неизвестными величинами. В современном виде мы имеем систему уравнений Максвелла благодаря немецкому физику Г. Герцу и англичанину О. Хэвисайду. С помощью этих уравнений можно описать все электромагнитные явления.

Система уравнений Максвелла

Систему уравнений Максвелла составляют:

Выражения (1)-(4) называют полевыми уравнениями, они применимы для описания всех макроскопических электромагнитных явлений. Иногда уравнения системы Максвелла группируют в пары, первую пару составляют из второго и третьего уравнения, вторую пару — из первого и четвертого уравнений. При этом говорят, что в первую пару уравнений входят только основные характеристики поля ($\overrightarrow\ и\ \overrightarrow$), а во вторую пару — вспомогательные ($\overrightarrow\ и\ \overrightarrow$).

Каждое из векторных уравнений (1) и (2) эквивалентно трем скалярным уравнениям. Эти уравнения связывают компоненты векторов, которые находятся в левой и правой частях выражений. Так, в скалярном виде уравнение (1) представляется как:

Готовые работы на аналогичную тему

В скалярном виде уравнение (2) запишем как:

Третье уравнение из системы Максвелла в скалярном виде:

Четвертое уравнение в скалярной форме примет следующий вид:

Для того чтобы рассмотреть конкретную ситуацию, систему уравнений (1)-(4) дополняют следующими материальными уравнениями, которые учитывают электромагнитные свойства среды:

Необходимо отметить, что существует целый ряд явлений, в которых материальные уравнения существенно отличны от уравнений (5), например, если речь идет о нелинейных явлениях. В таких случаях получение материальных уравнений составляет отдельную научную задачу.

Физический смысл уравнений Максвелла

Уравнение (1) системы указывает на то, что двумя возможными источниками магнитного поля являются токи проводимости ($\overrightarrow$) и токи смещения ($\frac<\partial \overrightarrow><\partial t>$).

Уравнение (2) является законом электромагнитной индукции и отображает тот факт, что переменное магнитное поле — один из источников возникновения электрического поля.

Следующим источником электрического поля служат электрические заряды, что и отображает уравнение (4), которое является, по сути, законом Кулона.

Уравнение (3) означает, что линии магнитной индукции не имеют источников (они либо замкнуты, либо уходят в бесконечность), что приводит к выводу об отсутствии магнитных зарядов, которые создают магнитное поле.

Материальные уравнения (5) — это соотношения между векторами поля и токами. Диэлектрические свойства среды заключены в диэлектрической проницаемости ($\varepsilon $). Магнитные свойства, которые описывает намагниченность, учтены в магнитной проницаемости ($\mu $). Проводящие свойства среды сосредоточены в удельной проводимости ($\sigma $).

Уравнения поля линейны и учитывают принцип суперпозиции.

Границы применимости уравнений Максвелла

Система уравнений Максвелла ограничена следующими условиями:

Материальные тела должны быть неподвижны в поле.

Постоянные $\varepsilon ,\ \mu ,\sigma $ могут зависеть от координат, но не должны зависеть от времени и векторов поля.

В поле не должно находиться постоянных магнитов и ферромагнитных тел.

Если существует необходимость учета движения среды, то уравнения системы Максвелла оставляют неизменными, а движение учитывается в материальных уравнениях, которые становятся зависимыми от скорости среды и существенно усложняются. Кроме прочего материальные уравнения перестают быть соотношениями между парами величин, как в (5). Например, плотность тока проводимости становится зависимой от индукции магнитного поля, а не только от напряженности электрического поля.

Магнитное поле постоянных магнитов, например, можно описать, используя систему Максвелла, если известна намагниченность. Но, если заданы токи, то в присутствии ферромагнетиков описать поле при помощи данных уравнений не получится.

Задание: Докажите, что из уравнений Максвелла следует закон сохранения заряда.

Решение:

В качестве основания для решения задачи используем из системы Максвелла уравнение:

Проведем операцию дивергирования в обеих частях выражения (1.1):

Для выражения (1.2) в соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Рассмотрим второе слагаемое в правой части. Мы можем поменять порядок дифференцирования, так как время и пространственные координаты независимы, то есть записать:

В соответствии с системой Максвелла мы знаем, что источниками электрических полей служат заряды или:

Что позволяет нам записать уравнение (1.4) в виде:

Что дает нам закон сохранения заряда, который записан в виде:

Данное уравнение называют уравнением непрерывности тока, оно содержит в себе закон сохранения заряда, что совершенно очевидно, если выражение (1.8), записать в интегральной форме:

тогда если области замкнуты и изолированы получаем:

Что требовалось доказать.

Задание: Покажите, что уравнения $rot\overrightarrow=-\frac<\partial \overrightarrow><\partial t>$ и $div\overrightarrow=0$ , входящие в систему Максвелла не противоречат друг другу.

Решение:

За основу решения примем уравнение:

Возьмём дивергенцию от обеих частей уравнения:

В соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Соответственно, получаем, что

Выражение $div\overrightarrow=const$ не противоречит тому, что $div\overrightarrow=0$.

Мы получили, что уравнения $rot\overrightarrow=-\frac<\partial \overrightarrow><\partial t>$ и $div\overrightarrow=0$ совместны, что требовалось показать.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 01 03 2021


источники:

http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D0%BC/07-3.htm

http://spravochnick.ru/fizika/uravneniya_maksvella/