Полная система уравнений максвелла имеет вид справедлива

Полная система уравнений Максвелла

Полная система уравнений Максвелла представляет собой систему дифференциальных или интегральных уравнений, решение которых позволяет определить характеристики электрического и магнитного поля в любой точке пространства в любой момент времени. Эти уравнения удовлетворяют динамическому принципу причинности или лапласовскому детерминизму.

Согласно этим уравнениям, если известно распределение зарядов в пространстве и заданы характеристики электрического и магнитного поля в начальный момент времени, а также заданы характеристики среды, то можно найти характеристики электрического и магнитного поля в любой момент времени в любой точке пространства.

Полная система уравнений Максвелла имеет вид, представленный в таблице:

Номер уравненияЗаконУравнение Максвелла в дифференциальной формеУравнение Максвелла в интегральной форме
Закон Био – Савара — Лапласа
Закон Фарадея для электромагнитной индукции
Вихревой характер магнитного поля
Теорема Остроградского — Гаусса
Определение вектора электрической индукции
Определение вектора индукции магнитного поля
Закон сохранения электрического заряда
Закон Ома для полной цепи

Дата добавления: 2017-06-02 ; просмотров: 724 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнения Максвелла

Вы будете перенаправлены на Автор24

Значение уравнений Максвелла

Уравнения Дж. Максвелла создают основу для предложенной им теории электромагнитных явлений, которая объяснила все известные в то время эмпирические факты, некоторые эффекты предсказала. Главным выводом теории Максвелла стало положение о существовании электромагнитных волн, которые распространяются со скоростью света.

Уравнения, предложенные Максвеллом, в электромагнетизме играют роль подобную роли законов Ньютона в классической механике. Они явились обобщением экспериментальных законов и продолжением идей ученых (Кулона, Ампера, Фарадея и др.) изучавших электромагнетизм до Максвелла.

Сам Максвелл предложил двадцать уравнений в дифференциальной форме с двадцатью неизвестными величинами. В современном виде мы имеем систему уравнений Максвелла благодаря немецкому физику Г. Герцу и англичанину О. Хэвисайду. С помощью этих уравнений можно описать все электромагнитные явления.

Система уравнений Максвелла

Систему уравнений Максвелла составляют:

Выражения (1)-(4) называют полевыми уравнениями, они применимы для описания всех макроскопических электромагнитных явлений. Иногда уравнения системы Максвелла группируют в пары, первую пару составляют из второго и третьего уравнения, вторую пару — из первого и четвертого уравнений. При этом говорят, что в первую пару уравнений входят только основные характеристики поля ($\overrightarrow\ и\ \overrightarrow$), а во вторую пару — вспомогательные ($\overrightarrow\ и\ \overrightarrow$).

Каждое из векторных уравнений (1) и (2) эквивалентно трем скалярным уравнениям. Эти уравнения связывают компоненты векторов, которые находятся в левой и правой частях выражений. Так, в скалярном виде уравнение (1) представляется как:

Готовые работы на аналогичную тему

В скалярном виде уравнение (2) запишем как:

Третье уравнение из системы Максвелла в скалярном виде:

Четвертое уравнение в скалярной форме примет следующий вид:

Для того чтобы рассмотреть конкретную ситуацию, систему уравнений (1)-(4) дополняют следующими материальными уравнениями, которые учитывают электромагнитные свойства среды:

Необходимо отметить, что существует целый ряд явлений, в которых материальные уравнения существенно отличны от уравнений (5), например, если речь идет о нелинейных явлениях. В таких случаях получение материальных уравнений составляет отдельную научную задачу.

Физический смысл уравнений Максвелла

Уравнение (1) системы указывает на то, что двумя возможными источниками магнитного поля являются токи проводимости ($\overrightarrow$) и токи смещения ($\frac<\partial \overrightarrow><\partial t>$).

Уравнение (2) является законом электромагнитной индукции и отображает тот факт, что переменное магнитное поле — один из источников возникновения электрического поля.

Следующим источником электрического поля служат электрические заряды, что и отображает уравнение (4), которое является, по сути, законом Кулона.

Уравнение (3) означает, что линии магнитной индукции не имеют источников (они либо замкнуты, либо уходят в бесконечность), что приводит к выводу об отсутствии магнитных зарядов, которые создают магнитное поле.

Материальные уравнения (5) — это соотношения между векторами поля и токами. Диэлектрические свойства среды заключены в диэлектрической проницаемости ($\varepsilon $). Магнитные свойства, которые описывает намагниченность, учтены в магнитной проницаемости ($\mu $). Проводящие свойства среды сосредоточены в удельной проводимости ($\sigma $).

Уравнения поля линейны и учитывают принцип суперпозиции.

Границы применимости уравнений Максвелла

Система уравнений Максвелла ограничена следующими условиями:

Материальные тела должны быть неподвижны в поле.

Постоянные $\varepsilon ,\ \mu ,\sigma $ могут зависеть от координат, но не должны зависеть от времени и векторов поля.

В поле не должно находиться постоянных магнитов и ферромагнитных тел.

Если существует необходимость учета движения среды, то уравнения системы Максвелла оставляют неизменными, а движение учитывается в материальных уравнениях, которые становятся зависимыми от скорости среды и существенно усложняются. Кроме прочего материальные уравнения перестают быть соотношениями между парами величин, как в (5). Например, плотность тока проводимости становится зависимой от индукции магнитного поля, а не только от напряженности электрического поля.

Магнитное поле постоянных магнитов, например, можно описать, используя систему Максвелла, если известна намагниченность. Но, если заданы токи, то в присутствии ферромагнетиков описать поле при помощи данных уравнений не получится.

Задание: Докажите, что из уравнений Максвелла следует закон сохранения заряда.

Решение:

В качестве основания для решения задачи используем из системы Максвелла уравнение:

Проведем операцию дивергирования в обеих частях выражения (1.1):

Для выражения (1.2) в соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Рассмотрим второе слагаемое в правой части. Мы можем поменять порядок дифференцирования, так как время и пространственные координаты независимы, то есть записать:

В соответствии с системой Максвелла мы знаем, что источниками электрических полей служат заряды или:

Что позволяет нам записать уравнение (1.4) в виде:

Что дает нам закон сохранения заряда, который записан в виде:

Данное уравнение называют уравнением непрерывности тока, оно содержит в себе закон сохранения заряда, что совершенно очевидно, если выражение (1.8), записать в интегральной форме:

тогда если области замкнуты и изолированы получаем:

Что требовалось доказать.

Задание: Покажите, что уравнения $rot\overrightarrow=-\frac<\partial \overrightarrow><\partial t>$ и $div\overrightarrow=0$ , входящие в систему Максвелла не противоречат друг другу.

Решение:

За основу решения примем уравнение:

Возьмём дивергенцию от обеих частей уравнения:

В соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Соответственно, получаем, что

Выражение $div\overrightarrow=const$ не противоречит тому, что $div\overrightarrow=0$.

Мы получили, что уравнения $rot\overrightarrow=-\frac<\partial \overrightarrow><\partial t>$ и $div\overrightarrow=0$ совместны, что требовалось показать.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 01 03 2021

МА́КСВЕЛЛА УРАВНЕ́НИЯ

  • В книжной версии

    Том 18. Москва, 2011, стр. 574-576

    Скопировать библиографическую ссылку:

    МА́КСВЕЛЛА УРАВНЕ́НИЯ, ос­но­во­по­ла­гаю­щие урав­не­ния клас­сич. мак­ро­ско­пич. элек­тро­ди­на­ми­ки, опи­сы­ваю­щие за­ко­но­мер­но­сти элек­тро­маг­нит­ных яв­ле­ний в сплош­ной сре­де или ва­куу­ме (в пре­неб­ре­же­нии кван­то­вы­ми яв­ле­ния­ми). Тео­рия элек­тро­маг­нит­но­го поля бы­ла раз­ра­бо­та­на Дж. К. Мак­свел­лом в 1856–73. В М. у. обоб­ще­ны ра­нее ус­та­нов­лен­ные опыт­ные за­ко­ны элек­трич. и маг­нит­ных яв­ле­ний, и эти за­ко­ны объ­е­ди­не­ны с кон­цеп­ци­ей М. Фа­ра­дея об элек­тро­маг­нит­ном по­ле, обес­пе­чи­ваю­щем взаи­мо­дей­ст­вие ме­ж­ду уда­лён­ны­ми за­ря­жен­ны­ми те­ла­ми (т. н. тео­рия близ­ко­дей­ст­вия). В ори­ги­наль­ном из­ло­же­нии Мак­свел­ла бы­ло соз­на­тель­но при­ве­де­но из­бы­точ­ное чис­ло урав­не­ний; при этом Мак­свелл ис­поль­зо­вал ма­те­ма­тич. ап­па­рат ква­тер­нио­нов Га­миль­то­на. Совр. фор­му М. у. с ис­поль­зо­ва­ни­ем век­тор­но­го ис­чис­ле­ния при­да­ли Г. Р. Герц и О. Хе­ви­сайд . М. у. свя­зы­ва­ют век­тор­ные по­ле­вые ве­ли­чи­ны (яв­ляю­щие­ся функ­ция­ми ко­ор­ди­нат и вре­ме­ни) с ис­точ­ни­ка­ми элек­тро­маг­нит­но­го по­ля – рас­пре­де­лён­ны­ми в про­стран­ст­ве и из­ме­няю­щи­ми­ся во вре­ме­ни элек­трич. за­ря­да­ми и то­ка­ми. М. у. име­ют вид (диф­фе­рен­ци­аль­ная фор­ма М. у. в СИ): $$\textrm\,\boldsymbol E=-\frac<\partial \boldsymbol B><\partial t>,\quad \textrm\,\boldsymbol H=\boldsymbol j+\frac<\partial \boldsymbol D><\partial t>,\\ \textrm

    \,\boldsymbol D=ρ,\quad \textrm
    \,\boldsymbol B=0,$$ где $\boldsymbol E$ – на­пря­жён­ность элек­трич. по­ля, $\boldsymbol B$ – маг­нит­ная ин­дук­ция, $\boldsymbol H$ – на­пря­жён­ность маг­нит­но­го по­ля, $\boldsymbol D$ – элек­трич. ин­дук­ция, $\boldsymbol j$ – плот­ность элек­трич. то­ка, $ρ$ – объ­ём­ная плот­ность элек­трич. за­ря­да. Дей­ст­вие диф­фе­рен­ци­аль­ных опе­ра­то­ров $\textrm$ и $\textrm
    $ на век­то­ры элек­тро­маг­нит­но­го по­ля мо­жет быть вы­ра­же­но че­рез век­тор­ное и ска­ляр­ное про­из­ве­де­ния опе­ра­то­ра Га­миль­то­на $\nabla$ (на­бла) и со­от­вет­ст­вую­ще­го по­ле­во­го век­то­ра; в де­кар­то­вой сис­те­ме ко­ор­ди­нат $$\nabla=\boldsymbol e_x\frac<\partial><\partial x>+\boldsymbol e_y\frac<\partial><\partial y>+\boldsymbol e_z\frac<\partial><\partial z>$$ (где $\boldsymbol e_x, \boldsymbol e_y, \boldsymbol e_z$ – еди­нич­ные век­то­ры соот­вет­ст­вую­щих ко­ор­ди­нат­ных осей), и для про­из­воль­ной век­тор­ной функ­ции $\boldsymbol f=\boldsymbol e_xf_x+\boldsymbol e_yf_y+\boldsymbol e_zf_z$ по­лу­ча­ем: $$\textrm\,\boldsymbol f=[\nabla \boldsymbol f]=\boldsymbol e_x \left( \frac<\partial f_z><\partial y>-\frac<\partial f_y> <\partial z>\right) + \boldsymbol e_y \left( \frac<\partial f_x><\partial z>-\frac<\partial f_z> <\partial x>\right) + \boldsymbol e_z \left( \frac<\partial f_y><\partial x>-\frac<\partial f_x> <\partial y>\right),\\ \textrm
    \,\boldsymbol f=\nabla \boldsymbol f=\frac<\partial f_x> <\partial x>+ \frac<\partial f_y> <\partial y>+ \frac<\partial f_z><\partial z>.$$


    источники:

    http://spravochnick.ru/fizika/uravneniya_maksvella/

    http://bigenc.ru/physics/text/2167197