Полное сгорание пропана уравнение реакции

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Cloudflare Ray ID: 6e0230d0fe721622 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Пропан: способы получения и химические свойства

Пропан C3H8 – это предельный углеводород, содержащий три атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Гомологический ряд пропана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение пропана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению.

Например, в молекуле пропана C3H8 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет образует угол, т.е. геометрия молекулы — уголковая или V-образная.

Изомерия пропана

Для пропана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства пропана

Пропан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для пропана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для пропана характерны радикальные реакции.

Пропан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Пропан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании пропана образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании пропана преимущественно образуется 2-бромпропан:

Хлорпропан может взаимодействовать с хлором и дальше с образованием дихлорпропана, трихлорпропана, тетрахлорпропана и т.д.

1.2. Нитрование пропана

Пропан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пропане замещается на нитрогруппу NO2.

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

2. Дегидрирование пропана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании пропана образуются пропен (пропилен) или пропин:

3. Окисление пропана

Пропан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Пропан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении пропана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение пропана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.

При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.

Например, при взаимодействии хлорметана и хлорэтана с натрием помимо пропана образуются этан и бутан.

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:

CH3–CH2 – CH2 –COONa + NaOH CH3–CH2 – CH3 + Na2CO3

3. Гидрирование алкенов и алкинов

Пропан можно получить из пропилена или припина:

При гидрировании пропена образуется пропан:

При полном гидрировании пропина также образуется пропан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Из угарного газа и водорода можно получить пропан:

5. Получение пропана в промышленности

В промышленности пропан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Расчет количества теплоты, теплового эффекта реакции

Вычисление количества теплоты реакции

Задача 61.
Дано термохимическое уравнение: Mg + 2HCl = MgCl2 + H2 + 858 кДж. Израсходовано 15 г магния, какое количество теплоты выделится в результате реакци?
Решение:
m(Mg) = 15 г;
∆H° = 858 кДж;
Q = ?

Запишем данные задачи в уравнение реакции, получим:

15 г х кДж
Mg + 2HCl = MgCl2 + H2; ∆H°
24 г -852 кДж

Рассчитаем какое количество теплоты выделится в результате реакци из пропорции, получим:

24 г Mg ——— -858 кДж
15 г Mg ——— х кДж

х = (15 . 852)/24 = -536,25 кДж.

Ответ: Q = -536,25 кДж.

Вычисление теплоты сгорания топлива на примере метана

Задача 62.
Определить теплоту сгорания одного кубометра (н.у.) метана СН4 и пропана C3Н8. Считать, что в продуктах сгорания вода находится в виде пара. Какой из этих двух газов выгоднее использовать в качестве балонного газообразного топлива?
Решение:
∆H°СН4(г) = -74,85 кДж/моль;
∆H°С3Н8(г) = –103,85 кДж/моль;
∆H°СО2(г) = -393,51 кДж/моль;
∆H°Н2О(пар) = -241,81 кДж/моль.
Теплота сгорания вещества (Q) – это тепловой эффект реакции окисления кислородом элементов, входящих в состав этого вещества до образования высших оксидов (CO2(г), H2O(ж)).
Теплоту сгорания обычно относят к стандартному состоянию (р = = 101,3 кПа; Т = 298 К), одному молю топлива, и называют стандартной теплотой сгорания
Q298,сгор. (кДж/моль). Для углеводородов и спиртов продуктами сгорания являются СО2(газ) и Н2О(ж).

а) Уравнение реакции горения метана:

Расччитаем ∆H°х.р. химической реакции, используя следствие из закона Гесса, получим:

Определим теплоту сгорания одного кубометра (н.у.) метана СН4, получим:

22,4 л : 802,28 кДж = 1000 л : х
х = (802,28 . 1000)/22,4 = 35816 кДж/м3 35,8 . 10^6 Дж/м 3 = 35,8 МДж/м 3 .
q(CH4) = 35,8 МДж/м 3 .

б) Уравнение реакции горения пропана:

Расччитаем ∆H°х.р. химической реакции, используя следствие из закона Гесса, получим:

Определим теплоту сгорания одного кубометра (н.у.) пропана С3Н8, получим:

22,4 л : 2041,92 кДж = 1000 л : х
х = (2041,92 . 1000)/22,4 = 91157,14 кДж/м 3 = 91 . 10^6 Дж/м 3 = 91 МДж/м 3 .
q(C3H8) = 91 МДж/м 3 .

Так как теплота сгорания одного кубометра (н.у.) пропана С3Н8 больше чем метана СН4, то выгоднее использовать в качестве балонного газообразного топлива пропан, поэтому в баллонах используется пропан-бутановая смесь.

Вычисление изменения энергии Гббса процесса

Задача 63.
Вычислить изменения энергии Гиббса в стандартных условиях и определить, какие реакции можно использовать для получения металлов из их оксидов:
а) Fe2О3(к) + 2Al(к) = 2Fe(к) + Al2O3(к)
б) 3СаО(к) + 2Al(к) = 3Са (к) + Al2O3(к)
в) Cr2O3(к) + 2Al(к) = 2Cr(к) + Al2O3(к)
г) Fe2O3(к) + 2Cr(к) = 2Fe(к) + Cr2O3(к)
Решение:
∆G°Fe2O3(к) = -740 кДж/моль;
∆G°СаО(к) = -471,93 кДж/моль;
∆G°Cr2O3(к) = -1059,0 кДж/моль;
∆G°Al2O3(к) = -1582,3 кДж/моль.
Для вычисления энергии Гиббса прямой реакции используются значения ∆G°298 соответствующих веществ, приведённых в специальных таблицах. Зная, что ∆G°298 есть функция состояния и, что ∆G°298 для простых веществ, находящихся в устойчивом при стандартных условиях агрегатных состояниях, равны нулю.
Для рассчета ∆G°х.р. используем выражение согласно следствию из закона Гесса:

Находим ∆G°298 для приведенных реакций:

Вычисление теплового эффекта реакции

Задача 64.
Дано термохимическое уравнение реакции:
Na2CO3 + 2HCl = 2NaCl + CO2 + H2O — Q
При взаимодействии карбоната натрия с раствором соляной кислоты выделяется 350 кДж тепла. Сколько для этого необходимо карбоната натрия?
Решение:
По таблице находим стандартные значения энтальпий образования веществ, получим:
М(Na2CO3) = 106 г/моль;
∆H°HСl(р-р) = -166,7 кДж/моль;
∆H°Na2CO3(к) = -1129,43 кДж/моль;
∆H°NaСl(кр) = -441,41 кДж/моль;
∆H°Н2О(ж) = -285,83 кДж/моль;
Q = -350 кДж;
m(Na2CO3) = ?
1. Расччитаем ∆H°х.р. химической реакции, используя следствие из закона Гесса, получим:

2. Расччитаем массу необходимого карбоната натрия, получим:

Термохимическое уравнение реакции будет иметь вид:

Запишем данные задачи в уравнение, получим:

х г -39,13 кДж
Na2CO3 + 2HCl = 2NaCl + CO2 + H2O; ∆H°
106 г -350 кДж
Рассчитаем массу карбоната натрия, вступившего в реакцию с соляной кислотой из пропорции:

106 г—— (-39,13 кДж)
х г ——- (-350 кДж)
х = (106 . 350)/39,13 = 948 г.

Задача 65.
При взаимодействии 40 мл 2 М раствора HCl с таким же количеством 2 М раствора NaOH температура реакционной смеси увеличилась на 13,7 К. Вычислите тепловой эффект реакции, если удельная теплоемкость воды равна 4,18 Дж/(г·К).
Решение:
∆t = 13,7 К;
V(HCl) = V(NaOH) = 40 мл = 0,04 л;
CМ(HCl) = СМ(NaOH) = 2 М;
ср2О) = 4,18 Дж/(г·К);
∆H°Н2О(ж) = -285,83 кДж/моль;
∆H°ОН- = -229,94 кДж/моль
∆H°T = ?
Уравнение реакции имеет вид:

NaOH + HCl = NaCl + H2O (молярная форма);
Na + + OH — + H + + Cl — = Na+ + Cl — + H2O (ионно-молекулярная форма);
OH — + H + = H2O (сокращенная ионно-молекулярная форма).

Из молекулярного уравнения реакции следует, что исходные вещества и продукты реакции взаимодействуют в одинаковых эквивалентных отношениях, CМ(HCl) = СМ(NaOH).
1. Рассчитаем количество моль HCl и NaOH, получим:

CМисх.(HCl) = СМисх.(NaOH) = [V(HCl) . CМ(HCl)]/1000 = (40 . 2)/1000 = 0,08 моль.

2. Находим стандартный тепловой эффект реакции нейтрализации в виде изменения энтальпии по известным теплотам образования по формуле:

∆H°х.р. = ∑∆H°(прод.) — ∑∆H°(исходн.).
∆H° = ∆H°Н2О(ж) — ∆H°ОН — = (-285,83) — (-229,94) = 55,89 кДж ≈ -55,9 кДж.
∆H° любой реакции нейтрализации равен 55,9 кДж/моль.

3. Рассчитаем ∆H°х.р. при концентрации 0,08 моль, получим:

∆H°х.р. = ∆H° . CМисх. = 55,9 кДж/моль . 0,08 = -4,472 кДж = -4472 Дж.

4. Вычислим тепловой эффект реакции нейтрализации гидроксида натри соляной кислотой при изменении температуры на 13,7 К по формуле:

∆H°Т = ∆H°х.р. + ∆ср . ∆t, где

∆H°Т — тепловой эффектр реакции при изменении температуры;
∆H°х.р. — тепловой эффект реакции при стандартных условиях;
∆ср — изменение удельной теплоемкости веществ в реакции;
∆t — изменение температуры реакции.

∆H°Т = ∆H°х.р. + ∆ср . ∆t = -4472 Дж + (4,18 . 13,7 К) = -4414,734 Дж = -4,414734 кДж ≈ -4,415 кДж.

Ответ: ∆H°Т ≈ -4,415 кДж.


источники:

http://chemege.ru/propan/

http://buzani.ru/zadachi/fizicheskaya-khimiya/1856-vychislenie-teplovogo-effekta-reaktsii-zadachi-61-65