Получение азотной кислоты из азота уравнение

Азотная кислота: получение и химические свойства

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например , концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

2. В промышленности азотную кислоту получают из аммиака . Процесс осуществляется постадийно.

1 стадия. Каталитическое окисление аммиака.

2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

Химические свойства

Азотная кислота – это сильная кислота . За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства .

1. Азотная кислота практически полностью диссоциирует в водном растворе.

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , азотная кислота взаимодействует с оксидом меди (II):

Еще пример : азотная кислота реагирует с гидроксидом натрия:

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).

Например , азотная кислота взаимодействует с карбонатом натрия:

4. Азотная кислота частично разлагается при кипении или под действием света:

5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):

HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

Таблица . Взаимодействие азотной кислоты с металлами.

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например , азотная кислота окисляет серу, фосфор, углерод, йод:

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором . Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например , азотная кислота окисляет оксид серы (IV):

Еще пример : азотная кислота окисляет иодоводород:

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.

Например , сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

При нагревании до серной кислоты:

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция«).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Оксиды азота. Азотная кислота

Оксиды азота

Известны несколько оксидов азота.

Несолеобразующие оксиды: N2O, NO

Все оксиды азота, кроме N2O, ядовитые вещества.

Оксид азота (I) N2O – это бесцветный газ со слабым запахом и сладковатым вкусом, хорошо растворимый в воде, но не взаимодействует с ней. При достаточно высокой температуре разлагается по уравнению:

В смеси с кислородом N2O используется в медицине для наркоза («веселящий» газ).

Наиболее важными являются оксиды азота (II) и (IV).

Оксид азота (II) NO – бесцветный газ, не имеет запаха. В воде малорастворим, относится, как и N2O, к несолеобразующим оксидам. Оксид азота (II) NO образуется из азота и кислорода при сильных электрических разрядах (например, во время грозы в воздухе) или при высокой температуре:

В лаборатории оксид азота (II) получают, например, при взаимодействии меди и разбавленной азотной кислоты:

Оксид азота (II) в промышленности получают каталитическим окислением аммиака и используют для получения азотной кислоты:

Оксид азота (II) на воздухе легко окисляется до оксида азота (IV):

Оксид азота (IV)

Оксид азота (IV) NO2 – ядовитый газ бурого цвета, имеет характерный запах. Хорошо растворяется в воде. Оксид азота (IV) является смешанным оксидом, которому соответствуют две кислоты: азотистая HNO2 и азотная HNO3. Поэтому взаимодействие с водой происходит по уравнению:

При взаимодействии NO2 с водой в присутствии кислорода (на воздухе) образуется только азотная кислота:

При растворении NO2 в щелочи, например NaOH, образуются две соли (нитрат и нитрит) и вода:

В избытке кислорода образуется только нитрат натрия:

Ниже 22 0 С молекулы оксида азота (IV) NO2 легко соединяются попарно и образуют бесцветную жидкость состава N2O4, которая при охлаждении до – 10,2 0 С превращается в бесцветные кристаллы.

В лаборатории NO2 можно получить при взаимодействии, например, меди с концентрированной азотной кислотой:

В промышленности NO2 получают путем окисления NO кислородом и далее используют для получения азотной кислоты.

Оксид азота (III) N2O3 – это темно-синяя жидкость, является кислотным оксидом. При взаимодействии с водой образуется азотистая кислота:

Оксид азота (III)

Оксид азота (V) N2O5 – бесцветные кристаллы, хорошо растворимые в воде с образованием азотной кислоты:

Азотная кислота

Физические свойства

Азотная кислота HNO3 – бесцветная жидкость, имеет резкий запах, легко испаряется, кипит при температуре 83 0 С. При попадании на кожу азотная кислота может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой). С водой азотная кислота смешивается в любых соотношениях.

Обычно применяемая в лаборатории концентрированная азотная кислота содержит 63% HNO3. При хранении довольно легко, особенно на свету разлагается по уравнению:

Выделяющийся газ NO2 окрашивает азотную кислоту в бурый цвет.

Химические свойства

Кислотно – основные свойства

Азотная кислота – одна из наиболее сильных кислот. В водных растворах она полностью диссоциирована на ионы:

Как и все кислоты, она реагирует:

в) с солями более слабых кислот:

Окислительно – восстановительные свойства

Азотная кислота является одним из сильнейших окислителей. Ее окислительно-восстановительные свойства обусловлены присутствием в молекуле HNO3 атома азота в высшей степени окисления N +5 в составе кислотного остатка NO3 — . Окислительные свойства кислотного остатка NO3 — значительно сильнее, чем ионов водорода Н + , поэтому азотная кислота взаимодействует практически со всеми металлами, кроме золота и платины, находящимися в конце ряда напряжений. Так как окислителем в HNO3 являются ионы NO3 — , а не ионы Н + , то при взаимодействии HNO3 с металлами практически никогда не выделяется водород. Нитрат-ионы NO3 — при взаимодействии HNO3 с металлами восстанавливаются тем полнее, чем более разбавлена кислота и чем более активен металл. На следующей схеме показано, какие продукты могут образоваться при восстановлении HNO3:

Общая схема взаимодействия азотной кислоты с металлами

Концентрированная HNO3 при взаимодействии с наиболее активными металлами (до Al в ряду напряжений) восстанавливается до N2O. Например:

Концентрированная HNO3 при взаимодействии с менее активными металлами (Ni, Cu, Ag, Hg) восстанавливается до NO2. Например:

Аналогично концентрированная азотная кислота реагирует с некоторыми неметаллами. Неметалл при этом окисляется до оксокислоты. Например:

Следует отметить, что концентрированная HNO3 пассивирует такие металлы, как Fe, Al, Cr. Сущность пассивирования заключается в образовании на поверхности металла тонкой, но очень плотной оксидной плёнки, предохраняющей металл от дальнейшего взаимодействия с кислотой; например:

Разбавленная HNO3 реагирует с наиболее активными металлами (до Al) с образованием аммиака или нитрата аммония NH4NO3:

При взаимодействии разбавленной азотной кислоты с менее активными металлами образуется оксид азота (II) NO:

Таким же образом разбавленная HNO3 взаимодействует с некоторыми неметаллами:

Взаимодействие азотной кислоты с медью

Получение

В лаборатории азотную кислоту получают при взаимодействии безводных нитратов с концентрированной серной кислотой:

В промышленности получение азотной кислоты идет в три стадии:

  1. Окисление аммиака до оксида азота (II):
  1. Окисление оксида азота (II) в оксид азота (IV):
  1. Растворение оксида азота (IV) в воде и избытком кислорода:

Применение

Азотную кислоту применяют для получения азотных удобрений, лекарственных и взрывчатых веществ.

Соли азотной кислоты

Соли азотной кислоты называются нитратами. Нитраты калия, натрия, аммония и кальция называются селитрами. Селитры применяют как минеральные азотные удобрения, так как азот является одним из основных элементов питания растений.

Все соли азотной кислоты хорошо растворимы в воде.

Соли азотной кислоты, как и она сама, являются сильными окислителями.

При нагревании все нитраты разлагаются с выделением кислорода, характер других продуктов разложения зависит от положения металла в ряду напряжений:

*на изображении записи кристаллы нитрата меди (II)

Азотная кислота (HNO3)

Строение молекулы азотной кислоты:

Связь N + -O — образуются по донорно-акцепторному механизму: атом азота отдает электрон, играя роль донора и приобретая положительный заряд, атом кислорода присоединяет электрон, выступая в роли акцептора и приобретая отрицательный заряд. Атомы азота проявляют степень окисления +5 (валентность 4).

Физические свойства азотной кислоты:

  • бесцветная маслянистая жидкость с резким запахом;
  • температура кипения 83°C
  • плотность 1,4 г/см 3 (63% HNO3);
  • с водой смешивается в любых пропорциях, проявляя в водных растворах свойства сильной кислоты;
  • легко разлагается на свету при длительном хранении, приобретая при этом желтый оттенок, в который ее окрашивает газ NO2, выделяющийся при разложении:
    4HNO3 ↔ 2H2O+4NO2↑+O2

Химические свойства азотной кислоты

HNO3 является одной из самых сильных кислот — в водных растворах полностью диссоциирует на катионы водорода и нитрат-ионы:
HNO3 ↔ H + +NO3

Азотная кислота вступает в реакции:

Следует обратить внимание, что азотная кислота в обменных реакциях может взаимодействовать далеко не со всеми солями, а лишь только с теми, при реагировании с которыми образуются нерастворимые, слабодиссоциирующие и газообразные вещества, которые, по мере их образования, более не участвуют в реакции обмена. В обменных реакциях солями, при взаимодействии с которыми образуются растворимые в воде соли азотной кислоты, азотная кислота не участвует.

В окислительно-восстановительных реакциях азотная кислота выступает в роли сильного окислителя. Высокие окислительные свойства HNO3 объясняются тем, что в молекуле азотной кислоты атом азота в составе кислотного остатка NO3 — имеет максимально возможную степень окисления +5. По этой причине окислительные свойства NO3 — значительно превосходят «возможности» катионов водорода H + , из-за чего азотная кислота реагирует практически со всеми металлами за исключением золота,платины, родия, рутения, иридия и тантала, стоящими в конце ряда напряжений.

Характерной особенностью взаимодействия азотной кислоты с металлами является отсутствие выделения водорода, поскольку окислителями являются не катионы водорода, а нитрат-ионы NO3 — , которые, при взаимодействии азотной кислоты с металлами восстанавливается тем полнее, чем более активным является металл и чем более разбавленной является HNO3.

По этой причине образование тех или иных продуктов реакции азотной кислоты и металла зависит от концентрации кислоты и активности металла.

Атом азота в молекуле азотной кислоты имеет степень окисления +5, и может принимать 1, 2, 3, 4, 5 или 8 электронов:

Чем более концентрированной является азотная кислота, тем меньшей окислительной способностью по отношению к металлам она обладает.

С другой стороны, чем более активным является металл, тем в большей степени он восстанавливает азотную кислоту.

Примеры реакций азотной кислоты:

  • концентрированная HN +5 O3 с активными металлами (до алюминия в ряду напряжений) восстанавливается до N2O
    10HN +5 O3+4Ca 0 = 4Ca +2 (NO3)2+N2 +1 O↑+5H2O
  • концентрированная HN +5 O3 с неактивными металлами (Ni, Cu, Ag, Hg) восстанавливается до NO2
    4HN +5 O3+Ni 0 = Ni +2 (NO3)2+2N +4 O2↑+2H2O
  • концентрированная HN +5 O3 с неметаллами (Ni, Cu, Ag, Hg) восстанавливается до NO2
    4HN +5 O3+P 0 = HP +5 O3+5N +4 O2↑+2H2O
  • разбавленная HN +5 O3 с активными металлами (до алюминия в ряду напряжений) образует аммиак или нитрат аммония
    10HN +5 O3+4Mg 0 = 4Mg +2 (NO3)2+N -3 H4N +5 O3+3H2O
  • разбавленная HN +5 O3 с неактивными металлами образует оксид азота (II)
    8HN +5 O3+3Cu 0 = 3Cu +2 (NO3)2+2N +2 O↑+4H2O
  • разбавленная HN +5 O3 с неметаллами образует оксид азота (II)
    2HN +5 O3+S 0 = H2S +6 O4+2N +2 O↑

Концентрированная азотная кислота пассивирует алюминий, железо и хром, образуя на их поверхности очень прочную нерастворимую оксидную пленку:
2Al+6HNO3 = Al2O3+6NO2+3H2O

«Царская водка» (смесь концентрированной азотной кислоты с соляной в соотношении 1:3) окисляет золото и платину:
Au+3HNO3+3HCl = AuCl3+3NO2+3H2O

Получение и применение азотной кислоты

Промышленный способ получения азотной кислоты:

  • окислением аммиака на платиновом катализаторе до оксида азота (II):
    4N -3 H3+5O2 0 = 4N +2 O -2 +6H2O
  • окислением оксида азота (II) до оксида азота (IV):
    2N +2 O -2 +O2 0 = 2N +4 O2 -2
  • растворением оксида азота (IV) в воде в присутствии кислорода (автор способа И.И.Андреев, 1916 г.):
    4N +4 O2+2H2O+O2 0 = 4HN+5O3 -2

Лабораторный способ получения азотной кислоты:

  • взаимодействием безводных нитратов с концентрированной серной кислотой:
    NaNO3+H2SO4 = NaHSO4+HNO3

Применение азотной кислоты:

  • производство азотных удобрений;
  • в фармакологии для производства лекарственных препаратов;
  • в производстве взрывчатых веществ.

Соли азотной кислоты

О солях азотной кислоты, наверняка, слышали многие, ведь в последнее время так много говорят о вреде нитратов в овощах и фруктах.

Нитраты калия, натрия, аммония и кальция называются селитрами (калийная селитра, натриевая селитра, аммонийная селитра, известковая селитра). Селитры нашли широкое применение в сельском хозяйстве в качестве минеральных азотных удобрений, что вполне логично, ибо азот является одним из основных элементов растений.

Нитраты хорошо растворяются в воде, при этом такие растворы не обладают окислительными свойствами, а вот расплавы нитратов являются хорошими окислителями.

Те нитраты, которые были образованы слабыми основаниями, гидролизуются, их водные растворы являются кислыми:
Cu 2+ (NO3)2+ H2O ↔ CuOH + NO3+ H + NO3

Соли азотной кислоты являются сильными окислителями.

Все нитраты, за исключением нитрата аммония разлагаются с выделением кислорода, при этом образующиеся продукты разложения зависят от электроотрицательности металла (см. таблицу выше):

  • соли металлов, расположенных в ряду напряжений левее магния, при разложении образуют кроме кислорода еще и нитриты:
    MeN +5 O3 → MeN +3 O2+O2 0 ↑
    2KNO3 = 2KNO2+O2
  • соли металлов, расположенных от магния до меди — образуют оксиды металла и азота (IV):
    MeN +5 O3 → MeO+N +4 O2↑+O2 0 ↑
    2Pb(NO3)2 = 2PbO+4NO2+O2
  • соли металлов, расположенных правее меди — образуют свободный металл и оксид азота (IV):
    MeN +5 O3 → Me+N +4 O2↑+O2 0 ↑
    2AgNO3 = 2Ag+2NO2+O2
  • нитрат аммония разлагается с образованием оксида азота (I) и воды:
    NH4NO3 = N2O+2H2O

Нитраты вступают в реакции, типичные для всех солей:

Получение и применение нитратов

Нитраты получают реакцией азотной кислоты:

  • Селитры используются в качестве минеральных удобрений:
    • KNO3 — калийная или индийская селитра;
    • NaNO3 — натриевая или чилийская селитра;
    • NH4NO3 — аммонийная селитра;
    • Ca(NO3)2 — известковая или норвежская селитра.
  • Калийная селитра используется для изготовления «черного пороха».
  • Аммонийная селитра используют для изготовления взрывчатого вещества — аммонала.

Другие соединения азота:

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе


источники:

http://al-himik.ru/oksidy-azota-azotnaja-kislota/

http://prosto-o-slognom.ru/chimia/504_azotnaya_kislota_HNO3.html