Получение газов в промышленности уравнение

Получение технологических газов

Синтез-газ из твердого топлива. Первым из основных источников сырья для получения синтез-газа явилось твердое топливо, которое перерабатывалось в газогенераторах водяного газа по следующим реакциям:

Такой способ получения заключается в попеременной подаче через слой крупнокускового твердого топлива (антрацита, кокса, полукокса) воздушного и парового дутья. Синтез-газ получают на стадии парового дутья, а необходимая температура слоя топлива достигается в течение стадии

воздушного дутья. Цикл работы генератора составляет 3—5 мин. Полученный водяной газ содержит 50—53% Н2 и

36% СО. Для дальнейшего использования в производстве водяной газ необходимо очистить от сернистых соединений и провести конверсию оксида углерода по реакции

а затем удалить диоксид углерода полностью в случае его применения для синтеза аммиака или частично для синтеза метанола.

Недостатками процесса являются его периодичность, низкая единичная производительность газогенератора, а также высокие требования к сырью по количеству и температуре плавления золы, его гранулометрическому составу и другим характеристикам.

В промышленном масштабе были испытаны процессы газификации в кипящем слое мелкозернистных видов топлива. Дальнейшим усовершенствованием является газификация в кипящем слое на парокислородном дутье под давлением. В опытах по газификации углей Канско-Ачинского бассейна при давлении 2,0 МПа получен газ следующего состава (%): СО2 — 29,7; О2 — 0,2; СО- 20,2; Н2 — 42,3; СН4 — 7,0; N2 —0,6.

Другим направлением является газификация топлива в виде пыли. Этот процесс позволяет использовать практически любые виды топлива. Его особенностями являются, высокая турбулизация в зоне реакции за| счет подачи встречных потоков топливной смеси и хорошее смешение парокислородной смеси с топливной пылью.

Синтез-газ из жидких углеводородов. Получение синтез-газа из жидких углеводородов распространено в странах, бедных запасами природных газов. Так, например, в 1974 г. в Японии 67%, а в ФРГ 59% всего аммиака получено на базе переработки жидкого топлива. Очевидно, и в производстве метанола в аналогичных условиях жидкие топлива имеют такое же значение.

По технологическим схемам переработки в синтез-газ жидкие топлива можно разделить на две группы. Первая группа включает топлива, перерабатываемые высокотемпературной кислородной конверсией. Сюда относят тяжелые жидкие топлива — мазут, крекинг-остатки и т. п. Вторая группа — легкие прямоточные дистилляты (нафта), имеющие конечную температуру кипения не выше 200-220°С; она включает бензины, лигроины, смеси светлых дистиллятов. Вторая группа жидких топлив перерабатывается в синтез-газ каталитической конверсией водяным паром в трубчатых печах.

Высокотемпературная кислородная конверсия жидких топлив за рубежом осуществлена в процессах, в которых жидкое топливо под давлением проходит через подогреватель, откуда при 400 — 600°С поступает в газогенератор. Туда же подают и подогретый кислород, и перегретый водяной пар. В газогенераторе при температурах 1350–1450°С образуется синтез-газ, однако при этом выделяется также некоторое количество сажи. Газ очищают от сажи, а затем направляют на очистку от сернистых соединений. После этого газ, в состав которого входит 3—5% СО2, 45—48% СО, 40—45% Н2, а также определенные количества метана, азота и аргона, проходит конверсию СО и очистку от СО2. Процесс протекает под давлением, которое может достигать 15 МПа. Агрегаты имеют производительность 30 тыс. м 3 /ч (Н2 + СО) и более. Недостатками процесса являются высокий расход кислорода, выделение сажи, а также сложность технологической схемы.

Переработка в синтез-газ легко выкипающих жидких топлив каталитической конверсией водяным паром в трубчатых печах предусматривает в качестве первых технологических операций испарение

жидкого топлива и его тщательную очистку от примесей. Содержание сернистых соединений для последующей переработки не должно превышать 1 мг/кг углеводородного сырья. Далее пары углеводородов смешивают с перегретым водяным паром и подают в реакционные трубы трубчатой печи, заполненные никелевым катализатором. Процесс разработан в начале 60-х годов и широко используется в настоящее время за рубежом. Достоинствами его являются возможность получения синтез-газа под давлением, легкость регулирования состава синтез-газа, малый расход электроэнергии. К недостаткам можно отнести высокие требования к углеводородному составу исходного сырья по содержанию в нем непредельных и циклических углеводородов, серы и других примесей, большой удельный расход углеводородов.

Синтез-газ из природного газа. Синтез-газ из углеводородных газов (природного, попутного, газов переработки других топлив) в настоящее время является основным источником получения аммиака и метанола. По используемому окислителю и технологическому оформлению можно выделить следующие варианты процесса получения водород-содержащих газов: высокотемпературная кислородная конверсия, каталитическая парокислородная конверсия в шахтных реакторах, каталитическая пароуглекислотная конверсия в трубчатых печах.

Окисление метана (основного компонента углеводородных газов) при получении синтез-газа протекает по следующим основным суммарным реакциям:

Одновременно протекает реакция (III).

Аналогичным образом осуществляются реакции окисления гомологов метана.

В реальных условиях ведения процесса реакции (III), (V) и (VI) обратимы. Константа равновесия реакции (IV) в рабочем интервале температур весьма велика, т. е. можно считать, что реакция идет вправо до конца (кислород реагирует полностью). Реакции (IV)—(VI) протекают с увеличением объема. Так как следующие за конверсией метана процессы (очистку конвертированного газа, синтез) целесообразно вести при повышенном давлении, то для снижения затрат на сжатие предпочтительно конверсию метана проводить также под давлением.

Состав конвертированного газа должен удовлетворять определенным требованиям. Он характеризуется стехиометрическим показателем конверсии, который различен для разных производств и составляет

Высшие спирты……..…… .Н2 : СО 0,7—1,0 .

Несмотря на существенно различные требования к конвертированному газу, все его разновидности могут быть получены каталитической конверсией углеводородов с водяным паром, диоксидом углерода, кислородом и воздухом.

Очистка природного газа от сернистых соединений. Присутствие сернистых соединений в технологических газах нежелательно. Во-первых, они являются сильнодействующими каталитическими ядами, во-вторых, наличие сернистых соединений вызывает коррозию аппаратуры. Природный газ ряда месторождений содержит значительное количество соединений серы — неорганических и органических. Из неорганических соединений в природном газе содержится только сероводород. Органические сернистые соединения, содержащиеся в природном газе весьма разнообразны. К ним принадлежат сульфидоксид углерода COS, сероуглерод CS2, тиофен C4H4S,

сульфиды R2S, дисульфиды R2S2, меркаптаны RSH (метилмеркаптан CH3SH, этил-меркаптан C2H5SH, тяжелые меркаптаны, например, CeH5SH).

На основании многочисленных исследований установлено, что чем больше молекулярная масса соединения, тем труднее оно удаляется из газа. Самым трудноудаляемым сераорганическим соединением является тиофен. Плохо удаляются также сульфиды, дисульфиды и тяжелые меркаптаны.

В связи с тем, что содержание в природном газе тяжелых меркаптанов, сульфидов и дисульфидов в несколько раз превышает допустимое содержание серы в газе перед трубчатой конверсией (1 мг/м 3 ), в современных высокопроизводительных агрегатах синтеза аммиака

применяют двухстадийную сероочистку.

На первой стадии сераорганические соединения гидрируются с использованием алюмокобальтмолибденового или алюмоникель-молибденового катализатора при температуре 350–400°С и давлении 2-4 МПа. При гидрировании протекают следующие реакции:

В условиях проведения процесса, приведенные выше реакции, можно считать необратимыми, т. е. практически достигается полное гидрирование.

На второй стадии образовавшийся сероводород при температуре 390—410°С поглощается поглотителем на основе оксида цинка (ГИАП-10):

реакция практически необратима и можно обеспечить высокую степень очистки газа.

При повышенном содержании сернистых соединений в природном газе применяется очистка адсорбционным методом с использованием синтетических цеолитов (молекулярных сит). Наиболее подходящим для сероочистки является цеолит марки .NaX, в состав которого входят оксиды NaO,A12O3, SiO2. Сорбция осуществляется при температуре, близкой к комнатной; регенерируют цеолиты при 300—400°С. Регенерация производится либо азотом, либо очищенным газом при постепенном увеличении температуры, причем основная масса серы (65%) выделяется при 120—200°С.

Аппараты, применяемые для сероочистки, могут быть как радиального, так и полочного или шахтного типа. На рис.1 приведена схема двухступенчатой сероочистки природного газа с использованием полочных адсорберов.

Рис.7.1. Схема двухступенчатой очистки природного газа:

1 — подогреватель; 2 — аппарат гидрирования; 3 адсорбер с цинковым поглотителем, АВС – азотоводородная смесь.

Конверсия водяным паром. Равновесный состав газовой смеси определяется такими параметрами процесса, как температура и давление в системе, а также соотношением реагирующих компонентов. Паровая конверсия, как уже указывалось, может быть описана уравнением (V).

При атмосферном давлении и стехиометрическом соотношении исходных компонентов достаточно полная конверсия метана достигается при температурах около 800°С. При увеличении расхода водяного пара такой же степени разложения метана можно достичь при более низких температурах.

Применение давления существенно снижает полноту конверсии. Так, при давлении 3 МПа достаточно полная конверсия наблюдается лишь при температуре около 1100 °С.

В современных установках при давлении 2 МПа и выше при соотношении (СН42) = 1:4 остаточное содержание метана после паровой конверсии составляет 8—10%. Для достижения остаточного содержаний СН4около 0,5% конверсию ведут в две стадии: паровая конверсия под давлением <первая стадия) и паровоздушная конверсия с использованием кислорода воздуха (вторая стадия). При этом получается синтез-газ стехиометрического состава и отпадает необходимость в разделении воздуха для получения технологического кислорода и азота.

Рис.7.2. Технологическая схема конверсии метана:

1 – трубчатая печь; 2 – шахтный реактор; 3 – котел-утилизатор; 4 – смеситель; 5 – 7 — подогреватели

Конверсия метана кислородом. Для получения водорода конверсией метана кислородом необходимо провести процесс по реакции неполного окисления метана. Реакция протекает в две стадии

СН4 + 2О2 СО2 + 2 Н2О ; ∆Н = — 800 кДж

Значения констант равновесия реакций первой стадии настолько велики, что эти реакции можно считать практически необратимыми. В связи с этим повышение концентрации кислорода в газовой смеси сверх стехиометрического не приводит к увеличению выхода продуктов.

Повышение давления при конверсии кислородом, как и при конверсии водяным паром, термодинамически нецелесообразно; чтобы при повышенных давлениях добиться высокой степени превращения метана, необходимо проводить процесс при более высоких температурах.

Рассмотренные процессы конверсии метана водяным паром и кислородом протекают с различным тепловым эффектом: реакции паровой конверсии эндотермические, требуют подвода теплоты; реакции кислородной конверсии экзотермические, причем выделяющейся теплоты достаточно не только для автотермического осуществления собственно кислородной конверсии, но и для покрытия расхода теплоты на эндотермические реакции паровой конверсии. Поэтому конверсию метана

целесообразно проводить со смесью окислителей.

Парокислородная, парокислородовоздушная и паровоздушная конверсия метана.Автотермический процесс (без подвода теплоты извне) может быть осуществлен путем сочетанияконверсии метана в соответствии с экзотермической реакцией (IV) и эндотермической (V). Процессназывается парокислородной конверсией, если в качестве окислителей используют водяной пар икислород, и парокислородовоздушной, если в качестве окислителей используют водяной пар,кислород и воздух.Как тот, так и другой процесс нашли применение в промышленной практике. При проведениипарокислородной конверсии получают безазотистый конвертированный газ, при проведениипарокислородовоздушной конверсии — конвертированный газ, содержащий азот в таком количестве,которое необходимо для получения стехиометрической азотоводородной смеси для синтеза аммиака,т. е. 75% водорода и 25% азота.

Катализаторы конверсии метана. Скорость взаимодействия метана с водяным паром и диоксидом углерода без катализатора чрезвычайно мала. В промышленных условиях процесс ведут в присутствии катализаторов, которые позволяют не только значительно ускорить реакции конверсии, но

и при соответствующем избытке окислителей позволяют исключить протекание реакции: СН4 = С + 2Н2.

Катализаторы отличаются друг от друга не только содержанием активного компонента, но также видом и содержанием других составляющих — носителей и промоторов.

Наибольшей каталитической активностью в данном процессе обладают никелевые катализаторы на носителе — глиноземе (А12О3). Никелевые катализаторы процесса конверсии метана выпускают в виде таблетированных и экструдированных колец Рашига. Так, катализатор ГИАП-16 имеет следующий состав: 25% NiO, 57%, А12О3, 10%СаО, 8% MgO. Срок службы катализаторов конверсии при правильной эксплуатации достигает трех лет и более. Их активность снижается при действии различных каталитических ядов. Никелевые катализаторы наиболее чувствительны к действию сернистых соединений. Отравление происходит вследствие образования на поверхности катализатора сульфидов никеля, совершенно неактивных по отношению к реакции конверсии метана и его гомологов. Отравленный серой катализатор удается почти полностью регенерировать в определенных температурных условиях при подаче в реактор чистого газа. Активность зауглероженного катализатора можно восстановить, обрабатывая его водяным паром.

Как тот, так и другой процесс нашли применение в промышленной практике. При проведении парокислородной конверсии получают безазотистый конвертированный газ, при проведении парокислородовоздушной конверсии — конвертированный газ, содержащий азот в таком количестве, которое необходимо для получения стехиометрической азотоводородной смеси для синтеза аммиака, т. е. 75% водорода и 25% азота. Катализаторы конверсии метана. Скорость взаимодействия метана с водяным паром и диоксидом углерода без катализатора чрезвычайно мала. В промышленных условиях процесс ведут в присутствии катализаторов, которые позволяют не только значительно ускорить реакции конверсии, но и при соответствующем избытке окислителей позволяют исключить протекание реакции: СН4 = С + 2Н2. Катализаторы отличаются друг от друга не только содержанием активного компонента, но также видом и содержанием других составляющих — носителей и промоторов.

Наибольшей каталитической активностью в данном процессе обладают никелевые катализаторы на носителе — глиноземе (А12О3 ). Никелевые катализаторы процесса конверсии метана выпускают в виде таблетированных и экструдированных колец Рашига. Так, катализатор ГИАП-16 имеет следующий состав: 25% NiO, 57% А1 2О 3, 10%СаО, 8% MgO. Срок службы катализаторов конверсии при правильной эксплуатации достигает трех лет и более. Их активность снижается при действии различных каталитических ядов. Никелевые катализаторы наиболее чувствительны к действию сернистых соединений. Отравление происходит вследствие образования на поверхности катализатора сульфидов никеля, совершенно неактивных по отношению к реакции конверсии метана и его гомологов. Отравленный серой катализатор удается почти полностью регенерировать в определенных температурных условиях при подаче в реактор чистого газа. Активность зауглероженного катализатора можно восстановить, обрабатывая его водяным паром.

Конверсия оксида углерода. Процесс конверсии оксида углерода водяным паром протекает по уравнению (III). Как было показано выше, эта реакция частично осуществляется уже на стадии паровой конверсии метана, однако степень превращения оксида углерода при этом очень мала и в выходящем газе содержится до 11,0% СО и более. Для получения дополнительных количеств водорода и снижения до минимума концентрации оксида углерода в конвертированном газе осуществляют самостоятельную стадию каталитической конверсии СО водяным паром. В соответствии с условиями термодинамического равновесия повысить степень конверсии СО можно удалением диоксида углерода из газовой смеси, увеличением содержания водяного пара или проведением процесса при возможно низкой температуре. Конверсия оксида углерода, как видно из уравнения реакции, протекает без изменения объема, поэтому повышение давления не вызывает смещения равновесия. Вместе с тем проведение процесса при повышенном давлении оказывается экономически целесообразным, поскольку увеличивается скорость реакции, уменьшаются размеры аппаратов, полезно используется энергия ранее сжатого природного газа.

Процесс конверсии оксида углерода с промежуточным удалением диоксида углерода применяется в технологических схемах производства водорода в тех случаях, когда требуется получить водород с минимальным количеством примеси метана. Концентрация водяного пара в газе обычно определяется количеством, дозируемым на конверсию метана и оставшимся после ее протекания. Соотношение пар: газ перед конверсией СО в крупных агрегатах производства аммиака составляет 0,4—0,5. Проведение процесса при низких температурах — рациональный путь повышения равновесной степени превращения оксида углерода, но возможный только при наличии высокоактивных катализаторов. Следует отметить, что нижний температурный предел процесса ограничен условиями конденсации водяного пара. В случае проведения процесса под давлением 2—3 МПа этот предел составляет 180—200°С. Снижение температуры ниже точки росы вызывает конденсацию влаги на катализаторе, что нежелательно.

Реакция конверсии СО сопровождается значительным выделением теплоты, что обусловило проведение процесса в две стадии при разных температурных режимах на каждой. На первой стадии высокой температурой обеспечивается высокая скорость конверсии большого количества оксида углерода; на второй стадии при пониженной температуре достигается высокая степень конверсии оставшегося СО. Теплота экзотермической реакции используется для получения пара. Таким образом, нужная степень конверсии достигается при одновременном сокращении расхода пара.

Температурный режим на каждой стадии конверсии определяется свойствами применяемых катализаторов. На первой стадии используется железохромовый катализатор, который выпускается в таблетированном и формованном видах. В промышленности широко применяется среднетемпературный железохромовый катализатор. Для железохромового катализатора ядами являются сернистые соединения. Сероводород реагирует с Fe3O4 , образуя сульфид железа FeS. Органические сернистые соединения в присутствии железохромового катализатора взаимодействуют с водяным паром с образованием сероводорода. Помимо сернистых соединений отравляющее действие на железохромовый катализатор оказывают соединения фосфора, бора, кремния, хлора. Низкотемпературные катализаторы содержат в своем составе соединения меди, цинка, алюминия, иногда хрома. Известны двух-, трех-, четырех- и многокомпонентные катализаторы. В качестве добавок к указанным выше компонентам применяются соединения магния, титана, палладия, марганца, кобальта и др. Содержание меди в катализаторах колеблется от 20 до 50% (в пересчете на оксид). Наличие в низкотемпературных катализаторах соединений алюминия, магния, марганца сильно повышает их стабильность, делает более устойчивыми к повышению температуры. Перед эксплуатацией низкотемпературный катализатор восстанавливают оксидом углерода или водородом. При этом формируется его активная поверхность. Оксид меди и другие соединения меди восстанавливаются с образованием мелкодисперсной металлической меди, что, по мнению многих исследователей, и обусловливает его каталитическую активность. Срок службы низкотемпературных катализаторов обычно не превышает двух лет. Одной из причин их дезактивации является рекристаллизация под действием температуры и реакционной среды. При конденсации влаги на катализаторе происходит снижение его механической прочности и активности. Потеря механической прочности сопровождается разрушением катализатора и ростом гидравлического сопротивления реактора. Соединения серы, хлора, а также ненасыщенные углеводороды и аммиак вызывают отравление низкотемпературных катализаторов. Концентрация сероводорода не должна превышать 0,5 мг/м 3 исходного газа. Технологическое оформление конверсии природного газа. В настоящее время в азотной промышленности используются технологические схемы конверсии природного газа при повышенном давлении, включающие конверсию оксида углерода.

Рис.7.4 Технологическая схема конверсии прродного газа: 1 – копрессор природного газа; 2 – огневой подогреватель; 3 – реактор гидрирования сернистых соединений; 4 – адсорбер; 5 –дымосос; 6,7,9,10 – подогреватели природного газа, питательной воды, паровоздушной и парогазовой смесей соответственно; 8 – пароперегреватель; 11 – реакционные трубы; 12 – трубчатая печь (конвертор метана первой ступени); 13 – шахтный конвертор метана второй ступени; 14,16 – паровые котлы; 15,17 – конверторы оксида углерода перовй и второй ступеней; 18 – теплообменник; 19 – компрессор

На рис.7.4 приведена схема агрегата двухступенчатой конверсии СН4 и СО под давлением производительностью 1360 т/сут аммиака. Природный газ сжимают в компрессоре 1 до давления 4,6 МПа, смешивают с азотоводородной смесью (АВС:газ—1:10) и подают в огневой подогреватель 2, где реакционная смесь нагревается от 130 — 140°С до 370 — 400°С. Для обогрева используют природный или другой горючий газ. Далее нагретый газ подвергают очистке от сернистых соединений: в реакторе 3 на алюмокобальтмолибденовом катализаторе проводится гидрирование сераорганических соединений до сероводорода, а затем в адсорбере 4 сероводород поглощается сорбентом на основе оксида цинка. Обычно устанавливают два адсорбера, соединенные последовательно или параллельно. Один из них может отключаться на загрузку свежего сорбента. Содержание H 2S в очищенном газе не должно превышать 0,5 мг/м 3 газа.

Очищенный газ смешивается с водяным паром в отношении 1: 3,7 и полученная парогазовая смесь поступает в конвекционную зону трубчатой печи 12. В радиационной камере печи размещены трубы, заполненные катализатором конверсии метана, и горелки, в которых сжигается природный или горючий газ. Полученные в горелках дымовые газы обогревают трубы с катализатором, затем теплота этих газов дополнительно рекуперируется в конвекционной камере, где размещены подогреватели парогазовой и паровоздушной смеси, перегреватель пара высокого давления, подогреватели питательной воды высокого давления и природного газа.

Парогазовая смесь нагревается в подогревателе 10 до 525°С и затем под давлением 3.7 МПа распределяется сверху вниз по большому числу параллельно включенных труб, заполненных катализатором. Выходящая из трубчатого реактора парогазовая смесь содержит — 10%СН4. При температуре 850°С конвертированный газ поступает в’ конвертор метана второй ступени 13 — реактор шахтного типа. В верхнюю часть конвертора 13 компрессором 19 подается технологический воздух, нагретый в конвекционной зоне печи до 480—500°С. Парогазовая и паровоздушная смеси поступают в реактор раздельными потоками в соотношении, требуемом для обеспечения практически полной конверсии метана и получения технологического газа с отношением (СО-Н2):N2 — 3,05—3.10. Содержание водяного пара соответствует отношению пар: газ= 0,7: I. При температуре около 1000°С газ направляется в котел-утилизатор 14, вырабатывающий пар давлением 10,5 МПа. Здесь реакционная смесь охлаждается до 380— 420°C и идет в конвертор СО первой ступени 15, где на железохромовом катализаторе протекает конверсия основного количества оксида углерода водяным паром. Выходящая из реактора при температуре 450° С газовая смесь содержит около 3,6% СО. В паровом котле 16, в котором также вырабатывается пар, парогазовая смесь охлаждается до 225° С и подается в конвертор СО второй ступени 17, заполненный низкотемпературным катализатором, где содержание СО снижается до 0,5%. Конвертированный газ на выходе из конвертора 17 имеет следующий состав (%) : Н 2 -61,7; СО — 0.5; CO.- 17,4; N2 + Аг -20,1; СН 4 — 0,3. После охлаждения и дальнейшей утилизации теплоты конвертированный газ при температуре окружающей среды и давлении 2,6 МПа поступает на очистку.

Двухступенчатая паровая и паровоздушная каталитическая конверсия углеводородных газов и оксида углерода под давлением является первой стадией энерготехнологической схемы производства аммиака. Теплота химических процессов стадий конверсии СН4, СО, метанирования и синтеза аммиака используется для нагрева воды высокого давления и получения перегретого пара давлением 10,5 МПа. Этот пар, поступая в паровые турбины, приводит в движение компрессоры и насосы производства аммиака, а также служит для технологических целей. Основным видом оборудования агрегата конверсии является трубчатая печь. Трубчатые печи различаются по давлению, типу трубчатых экранов, форме топочных камер, способу обогрева, расположению камер конвективного подогрева исходных потоков. В промышленной практике распространены следующие типы трубчатых печей: многорядная, террасная двухъярусная, многоярусная с внутренними перегородками, с панельными горелками. В современных производствах синтетического аммиака и метанола чаще всего применяют прямоточные многорядные трубчатые печи с верхним пламенным обогревом.

Синтез аммиака

Рассмотрим элементарную технологическую схему современного производства аммиака при среднем давлении производительностью 1360 т/сутки. Режим ее работы характеризуется следующими параметрами: температура контактирования 450-550°С, давление 32 МПа, объемная скорость газовой смеси 4*10 4 нм 3 /м 3 *ч, состав азотоводородной смеси стехиометрический.

Смесь свежей АВС и циркуляционного газа под давлением подается из смесителя 3 в конденсационную колонну 4, где из циркуляционного газа конденсируется часть аммиака, откуда поступает в колонну синтеза 1. Выходящий из колонны газ, содержащий до 0.2 об. дол. аммиака направляется в водяной холодильник-конденсатор 2 и затем в газоотделитель 5, где из него отделяется жидкий аммиак. Оставшийся газ после компрессора смешивается со свежей АВС и направляется сначала в конденсационную колонну 4, а затем в испаритель жидкого аммиака 6, где при охлаждении до –20°С также конденсируется большая часть аммиака. Затем циркуляционный газ, содержащий около 0.03 об. дол. аммиака, поступает в колонну синтеза 1. В испарителе 6, одновременно с охлаждением циркуляционного газа и конденсацией содержащегося в нем аммиака, происходит испарение жидкого аммиака с образованием товарного газообразного продукта.

Основной аппарат технологической схемы — колонна синтеза аммиака, представляющая собой реактор идеального вытеснения Колонна состоит из корпуса и насадки различного устройства, включающей катализаторную коробку с размещенной в ней контактной массой и систему теплообменных труб. Для процесса синтеза аммиака существенное значение имеет оптимальный температурный режим. Для обеспечения максимальной скорости синтеза процесс следует начинать при высокой температуре и по мере увеличения степени превращения понижать ее. Регулирование температуры и обеспечение автотермичности процесса обеспечивается с помощью теплообменников, расположенных в слое контактной массы и дополнительно, подачей части холодной АВС в контактную массу, минуя теплообменник.

Рис.7.5.Технологическая схема синтеза аммиака: 1-колонна синтеза, 2- водяной конденсатор, 3 – смеситель свежей АВС и циркуляционного газа, 4-конденсационная колонна, 5- газоотделитель, 6 – испаритель жидкого аммиака, 7-котел-утилизатор, 8- турбоциркуляционный компрессор.

Применение аммиака. Аммиак — ключевой продукт для получения многочисленных азотсодержащих веществ, применяемых в промышленности, сельском хозяйстве и быту. На основе аммиака в настоящее время производятся практически все соединения азота, используемые в качестве целевых продуктов и полупродуктов неорганической и органической технологии.

Урок «Газообразные вещества». 11-й класс

Разделы: Химия

Класс: 11

  • актуализировать знания о некоторых свойствах газообразных веществ;
  • установить отличие газообразных веществ от твердых и жидких;
  • повторить закон Авогадро;
  • обобщить и систематизировать знания учащихся о способах получения, собирания и распознавания водорода, кислорода, аммиака, углекислого газа и этилена;
  • расширять кругозор детей; формировать научное мировоззрение.

Тип урока: урок обобщения и систематизации знаний.

Методы и методические приемы: демонстрационный, словесный (беседа по вопросам, рассказ), наглядный.

Оборудование и реактивы:

а)на столах у учащихся: карточки с таблицей для заполнения по ходу урока

Газ (краткая характеристика)

Получение (уравнение реакции)

Собирание

Распознавание

б)на демонстрационном столе:

  • реактивы – оксид марганца (IV), пероксид водорода, перманганат калия; карбонат кальция, соляная кислота и известковая вода; соляная кислота и цинк; хлорид аммония, гидроксид натрия, лакмусовая бумажка; этиловый спирт и концентрированная серная кислота;
  • оборудование – химический стакан (2 шт.); пробирки (5 шт.); прибор для получения газов (штатив с зажимами для 2-х пробирок, 2 пробирки); пробиркодержатель, лучина, спички, спиртовка, пробки с газоотводными трубками (2 шт.); плоскодонная колба, аппарат Кипа, стеклянная трубочка, стеклянная палочка.

Ход урока.

II. Проверка домашнего задания (7 мин.).

Вопросы для беседы.

1.Что такое полимер, мономер, структурное звено, степень полимеризации?

2.Что такое пластмассы?

3.Что такое волокна?

4.На какие группы делят пластмассы? Восстановите схему:

(Заполнение схемы: термопласты и термореактопласты.)

5.На какие группы делят волокна? Восстановить схему:

(Заполнение схемы: природные и химические; растительные и животные; искусственные и химические.)

6.Каковы области применения пластмасс? При ответе используйте рисунок 40 на с.56.

7.Какие неорганические полимеры вам известны? Какова их роль в неживой природе?

III. Актуализация, систематизация и обобщение знаний.

-Вы знаете, что зависимости от условий вещества могут находиться в разных агрегатных состояниях. Назовите эти состояния.

Планируемый ответ ученика.

(В зависимости от условий вещества могут находиться в жидком, твердом или газообразном состояниях).

-Рассмотрите рис. 51 на с. 67. Что характерно для газообразных веществ? Чем строение газообразных веществ отличается от строения веществ в твердом и жидком состояниях?

Планируемый ответ ученика.

(В газовой фазе расстояния между молекулами во много раз превышает размеры самих частиц.)

-При атмосферном давлении объем сосуда в сотни тысяч раз больше объема молекул газа, поэтому для газов выполняется закон Авогадро:

в равных объемах различных газов при одинаковых условиях содержится одинаковое число молекул.

-Вспомните, сколько молекул содержит один моль любого газа при нормальных условиях?

Планируемый ответ ученика.

(Один моль любого газа при нормальных условиях содержит 6х10 23 молекул.)

-Как называется это число?

Планируемый ответ ученика.

(Это число называется число Авогадро.)

-Какие условия считаются нормальными?

Планируемый ответ ученика.

(760 мм. рт.ст. и 0 0 С).

-Какой объем занимает 1 моль любого газообразного вещества при нормальных условиях? Как называют такой объем?

Планируемый ответ ученика.

(1 моль любого газа при нормальных условиях занимает объем 22,4 л. Такой объем называется молярным.)

-Найдите в учебнике на с.68 описание основных свойств газообразных веществ.

1.Газы не имеют собственной формы и объема. Поэтому занимают весь объем сосуда, в котором находятся.

2.Газы легко сжимаются.

3.Благодаря большому расстоянию между молекулами газы смешиваются друг с другом в любом отношении.

-При изучении химии, вы познакомились со свойствами некоторых газов, узнали способы их получения, собирания и распознавания. На сегодняшнем уроке вам предстоит вспомнить, как в лабораторных условиях получают водород, кислород, углекислый газ, аммиак и этилен; как собирают и распознают эти газы. По ходу изучения материала вы должны заполнить таблицу.

Водород – это самый легкий газ. В лаборатории его получают чаще всего в аппарате Кипа взаимодействием цинка с соляной кислотой:

Демонстрация получения водорода в аппарате Киппа.

— Так как водород самый легкий газ, его собирают в перевернутый вверх дном сосуд.

Демонстрация собирания водорода.

-Вспомните, как распознают водород?

Планируемый ответ ученика.

(К отверстию перевернутого вверх дном сосуда подносят зажженную лучину. Раздается глухой хлопок, если водород чистый или «лающий» звук, если водород содержит примеси.)

Демонстрация опыта по распознаванию водорода.

Формулу водорода, уравнение реакции получения водорода, способ его собирания и распознавания ученики записывают в соответствующие колонки таблицы.

— Кислород – газ, содержание которого в атмосфере составляет 21%. Кроме кислорода в верхних слоях атмосферы содержится аллотропное видоизменение – озон О3. В лаборатории кислород получают разложением перманганата калия KMnO4 или пероксида водорода H2O2 .

Демонстрация опытов получения кислорода:

1) разложением перманганата калия

2)разложением пероксида водорода в присутствии катализатора MnO2

— Собирают кислород в сосуд методом вытеснения воздуха или методом вытеснения воды. Почему?

Планируемый ответ ученика.

(Кислород собирают в сосуд вытеснением воздуха, потому что он тяжелее воздуха. Кислород собирают методом вытеснения воды, так как он мало растворим в воде.)

— Вспомните, как распознают кислород.

Планируемый ответ ученика.

(Распознают кислород по вспыхиванию, внесенной в сосуд с этим газом, тлеющей лучинки.)

Демонстрация опыта по распознаванию кислород: внесение в колбу с кислородом тлеющей лучинки; внесение тлеющей лучинки в химический стакан, в котором проходит разложение пероксида водорода.

Формулу кислорода, уравнения реакций получения кислорода, способы его собирания и распознавания ученики записывают в соответствующие колонки таблицы.

— Углекислый газ или оксид углерода (IV) СО2 – бесцветный, не имеющий запах газ.

Он примерно в полтора раза тяжелее воздуха. Растворим в воде. В лаборатории углекислый газ получают действием соляной кислоты на карбонат кальция:

Демонстрация опыта получения углекислого газа и его собирание.

— Вспомните, как получают углекислый газ в промышленности.

Планируемый ответ ученика.

(В промышленности углекислый газ получают обжигом известняка:

— Вспомните, как можно распознать углекислый газ.

Планируемый ответ ученика.

(Углекислый газ можно распознать по помутнению известковой воды или с помощью горящей лучинки.)

Демонстрация опытов по распознаванию углекислого газа:

  1. помутнение известковой воды (продувание углекислого газа через известковую воду)
    СО2 + Са(ОН)2 = СаСО3v + Н2О ;
  2. горящую лучину опустить в сосуд с углекислым газом. Лучина гаснет.

— Почему горящая лучина гаснет в атмосфере углекислого газа?

Планируемый ответ ученика.

(Потому что углекислый газ не поддерживает горение.)

— Где используют это свойство углекислого газа?

Планируемый ответ ученика.

(Свойство углекислого газа не поддерживать горение применяют при тушении пожаров.)

Формулу углекислого газа, уравнения реакций получения углекислого газа, способ его собирания и способы распознавания ученики записывают в соответствующие колонки таблицы.

— Аммиак NH3 – газ с резким запахом, бесцветный, хорошо растворим в воде.

В промышленности его получают взаимодействием азота с водородом, соблюдая следующие условия: катализатор (Fe), высокие температура и давление. Запишите уравнение реакции получения аммиака в промышленности, укажите, что реакция обратимая и условия, при которых она протекает:

В лаборатории аммиак получают взаимодействием щелочей с солями аммония:

— Сравните молярные массы аммиака и воздуха.

Планируемый ответ ученика.

(Молярная масса аммиака равна 17 г/моль, молярная масса воздуха – 29 г/моль. Аммиак легче воздуха.)

— Как следует собирать аммиак?

Планируемый ответ ученика.

(Так как аммиак легче воздуха, то его следует собирать так же как и водород – в перевернутую вверх дном пробирку.)

Демонстрация опыта получения и собирания аммиака.

— Как можно распознать аммиак?

Планируемый ответ ученика.

(Аммиак можно распознать по характерному запаху.)

-Еще аммиак можно распознать по изменению окраски влажной лакмусовой бумажки и по появлению белого дыма при поднесении стеклянной палочки, смоченной в соляной кислоте.

Демонстрация опытов по распознаванию аммиака:

  1. по запаху, соблюдая правило техники безопасности;
  2. поднести влажную лакмусовую бумажку к пробирке с аммиаком. Лакмусовая бумажка посинеет;
  3. стеклянную палочку смочить в соляной кислоте и опустить в пробирку с аммиаком. Наблюдается появление дыма. (Опыт «Дым без огня).

Формулу аммиака, уравнение реакции получения аммиака, способ его собирания и способы распознавания ученики записывают в соответствующие колонки таблицы.

— На уроках органической химии вы познакомились с газом этиленом С2Н4. Этилен – газ без цвета и запаха. В промышленности его получают дегидрированием этана:

Реакция протекает в присутствии катализатора и при высокой температуре.

В лаборатории этилен получают двумя способами: деполимеризацией полиэтилена или каталитической дегидратацией этилового спирта:

Распознают этилен по обесцвечиванию подкисленного раствора перманганата калия или бромной воды. Как можно собрать этилен?

Планируемый ответ ученика.

(Этилен тяжелее воздуха, поэтому его можно собрать вытеснением воздуха.)

Демонстрация опыта получения этилена реакцией дегидрирования этилового спирта и распознавание этилена обесцвечиванием подкисленного раствора перманганата калия.

Формулу этилена, уравнения реакции получения этилена, способ его собирания и способы распознавания ученики записывают в соответствующие колонки таблицы.

Итогом работы учащихся на уроке является заполненная таблица, которая имеет следующий вид:

Получение (уравнения реакций)

Собирание

Распознавание

не имеет запаха.

Вытеснением водорода металлами из растворов кислот:

В перевернутую вверх дном пробирку.

При поднесении к пламени раздается «хлопок» или «лающий» звук.

Кислород (О2) без запаха и цвета, тяжелее воздуха, мало растворим в воде.

1.Разложением перманганата калия:

2.Разложением пероксида водорода

2.Вытеснением воды.

Вспыхивание тлеющей лучинки, внесенной в сосуд с кислородом.

Углекислый газ – оксид углерода (IV) – СО2. Бесцветный, не имеет запаха, не поддерживает горение, тяжелее воздуха. Растворим в воде.

2.В лаборатории:
CaCO3 + 2HCl = CaCl2 + H2O + CO2↑.

Вытеснением воздуха.

1.Горящая лучина гаснет в сосуде с СО2.

2.По помутнению известковой воды:

СО2 + Са(ОН)2 = СаСО3v + Н2О

Аммиак (NН3) имеет резкий характерный запах, без цвета, хорошо растворим в воде, легче воздуха.

2.В лаборатории:
NH4Cl + NaOH = NaCl + H2O + NH3↑.

В перевернутую вверх дном пробирку.

2.По изменению цвета влажной лакмусовой бумажки (синеет).

3.По появлению дыма при поднесении стеклянной палочки, смоченной в соляной кислоте.

Этилен (С2Н4 или СН2 = СН2 ) без цвета и запаха, тяжелее воздуха.

1.В промышленности дегидрированием этана:

б)дегидратацией этилового спирта

С2Н5ОН → С2Н4 + Н2О

Вытеснением воздуха.

1.Обесцвечивание подкисленного раствора перманганата калия.

2.Обесцвечивание бромной воды.

Беседа по вопросам. (При ответах использовать таблицу.)

  1. Какие газообразные вещества были рассмотрены на уроке?
  2. Какие способы получения рассматривали?
  3. От чего зависит способ собирания того или иного газа?

V. Подведение итогов.

-На сегодняшнем уроке вы изучили общие свойства газообразных веществ. Вспомнили закон Авогадро. Повторили способы получения, собирания и распознавания водорода, кислорода, углекислого газа, аммиака и этилена.

Получение и применение газов

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Водород

Кислород

Аммиак

Углекислый

газ

Этилен

Формула

Физические свойства

Это самый легкий газ, не имеет цвета, запаха и вкуса.

Кислород – газ, содержание которого в атмосфере составляет 21%.Бесцветный, не имеющий запаха газ, который плохо растворяется в воде.

Аммиак NH3 – газ с резким запахом, бесцветный, хорошо растворим в воде.

СО2 – бесцветный, не имеющий запах газ. Он тяжелее воздуха. Растворим в воде.

Этилен – газ без цвета и запаха

Получение

В лаборатории его получают взаимодействием цинка с соляной кислотой.

В лаборатории кислород получают разложением перманганата калия KMnO4 или пероксида водорода H2O2 .

В лаборатории аммиак получают взаимодействием щелочей с солями аммония:

NH 4 Cl + NaOH = NaCl + H 2 O + NH 3

Так как аммиак легче воздуха, то его следует собирать, так же как и водород – в перевернутую вверх дном пробирку.

В лаборатории углекислый газ получают действием соляной кислоты на карбонат кальция: СаСО3+2НСL=CaCl2+H2O+CO2

В промышленности углекислый газ получают обжигом известняка:

В промышленности его получают дегидрированием этана:СН3−СН3 → СН2=СН2 + Н2.

В лаборатории: деполимеризацией полиэтилена или каталитической дегидратацией этилового спирта:

Качественная реакция

Распознают его так: к отверстию перевернутого вверх дном сосуда подносят зажженную лучину. Раздается глухой хлопок, если водород чистый и «лающий» звук, если водород содержит примеси. Водород с воздухом образует взрывчатую смесь — «гремучий газ».

Распознают кислород по вспыхиванию, внесенной в сосуд с этим газом, тлеющей лучинки.

Еще аммиак можно распознать по изменению окраски влажной лакмусовой бумажки.

Углекислый газ можно распознать по помутнению известковой воды или с помощью горящей лучинки.

Распознают этилен по обесцвечиванию подкисленного раствора перманганата калия или бромной воды.

Применение

Топливо, получение аммиака, водородно-кислородная сварка, производство маргарина.

Как окислитель ракетного топлива, для резки и сварки металлов, в химической промышленности, в медицине, в металлургии (производство стали)

Производство удобрений, производство азотной кислоты, медицина, хладагент.

Огнетушители, шипучие напитки, «сухой лед», создание спецэффектов на сцене.

Для ускорения созревания плодов, полиэтилена, этилового спирта, растворителей, производства уксусной кислоты.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 924 человека из 80 регионов

Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 20 человек из 11 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Курс добавлен 23.11.2021
  • Сейчас обучается 35 человек из 23 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 579 453 материала в базе

Материал подходит для УМК

«Химия», Габриелян О.С.

Химический практикум 2. Свойства неметаллов и их соединений

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 15.01.2017
  • 429
  • 1
  • 15.01.2017
  • 2240
  • 0
  • 15.01.2017
  • 533
  • 0
  • 15.01.2017
  • 1445
  • 0

  • 15.01.2017
  • 425
  • 0
  • 15.01.2017
  • 1568
  • 0
  • 15.01.2017
  • 1497
  • 6

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 15.01.2017 5314
  • DOCX 41 кбайт
  • 11 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Паршукова Элла Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 7 лет и 1 месяц
  • Подписчики: 7
  • Всего просмотров: 170222
  • Всего материалов: 96

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля

Время чтения: 1 минута

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

Профессия педагога на третьем месте по популярности среди абитуриентов

Время чтения: 1 минута

Университет им. Герцена и РАО создадут портрет современного школьника

Время чтения: 2 минуты

В Швеции запретят использовать мобильные телефоны на уроках

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://urok.1sept.ru/articles/527241

http://infourok.ru/poluchenie-i-primenenie-gazov-1521453.html