Получение хрома алюминотермическим способом уравнение

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e2579391bb01683 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Способ алюминотермического получения хрома металлического (варианты)

Владельцы патента RU 2260630:

Группа изобретений относится к металлургии. Способ включает проплавление шихты и выпуск продуктов плавки. Шихта содержит окись хрома, алюминий, известь, окислитель — селитра натриевая в варианте 1 или ангидрид и бихромат натрия (калия) в вариантах 2, 3, дополнительно в вариантах 2, 3 — кальция гидроокись и соль поваренную, в варианте 2 — концентрат плавикошпатовый. В варианте 2 получают хром с содержанием азота до 0,05 мас.%, в варианте 3 — с содержанием азота до 0,01 мас.%. Отличия в вариантах состоят в установленном соотношении извести (и кальция гидроокиси в вариантах 2, 3) к алюминию, ограничении содержания углерода в извести, введении большей части извести с минимальным содержанием углерода непосредственно в шихту, а остальной части извести с несколько большим содержанием углерода на колошник, определенных соотношениях компонентов в шихтах, загрузке и проплавлении шихты в одну стадию с высокими скоростями 310-450 кг/м 2 ·мин, загрузке плавикошпатового концентрата на оставшийся после слива на гарнисаж жидкий шлак в варианте 2. Техническим результатом является оптимизация термодинамических и кинетических условий восстановительного процесса. Это повышает содержание хрома, снижает содержания примесей — алюминия, углерода, азота и увеличивает выход высших марок алюминотермического хрома. 3 н.п. ф-лы, 1 табл.

Группа изобретений, связанных единым изобретательским замыслом, относится к металлургии, в частности к производству хрома металлического алюминотермическим способом.

Способы алюминотермического получения хрома металлического известны, например, из следующих источников [1, 2, 3].

Наиболее близким аналогом патентуемого способа следует указать способ по источнику [3]. Этот способ включает двухстадийные подготовку и последовательные загрузку и проплавление двух дифференцированных по соотношению компонентов частей шихты, содержащих окись хрома, алюминий, окислитель — селитру натриевую, известь, и выпуск продуктов плавки. Загрузку и проплавление шихты ведут со скоростью 170-280 кг/м 2 ·мин, при этом известь с нерегламентированным содержанием углерода загружают на колошник по ходу проплавления каждой части шихты.

Для получения хрома, содержащего не более 0,05 мас.% азота, используют в качестве окислителя ангидрид хромовый и бихромат калия или натрия с добавлением в части шихты кальция гидроокиси, соли поваренной, плавикошпатового (флюоритового) концентрата; известь также с нерегламентированным содержанием углерода загружают на колошник по ходу проплавления каждой части шихты. Части шихты загружают и проплавляют с такой же скоростью.

Недостаток указанного способа заключается в повышенном содержании в металле примесей алюминия, углерода и азота и соответственно меньшем содержании хрома, это определяет низкий выход высших марок алюминотермического хрома, составляющий 50-55% от общего выпуска, что не отвечает потребностям рынка.

Отсутствие непосредственно в составе проплавляемой шихты извести от начала протекания восстановительного процесса и дефицит в первой части шихты вносимого известью и гидроокисью кальция оксида кальция, необходимого для связывания образующегося в восстановительном процессе глинозема в гексоалюминат кальция, не позволяют в достаточной мере реализовать положительное влияние оксида кальция как флюсующей добавки на оптимизацию термодинамических и кинетических условий протекания восстановительного процесса.

Кроме того, в способе по прототипу не решается вопрос получения чистого хрома с содержанием азота не более 0,01 мас.%.

Другой недостаток указанного способа заключается в большей вероятности получения несоответствующей продукции при неполадках в работе оборудования смесительных установок и тракта шихтоподачи по ходу плавки, так как конечный состав металла реализуется при полном проплавлении обеих дифференцированных по соотношению компонентов частей шихты.

Патентуемые изобретения направлены на увеличение выхода высших марок алюминотермического хрома.

Технический результат, достигаемый каждым изобретением, состоит в повышении содержания хрома и снижении содержания примесей — алюминия, углерода и азота в металле массового производства.

Для обеспечения указанного технического результата согласно п.1. формулы при получении хрома преимущественно марки Х99 общее количество извести на плавку задают в соотношении (0,16-0,19):1 к массе расходуемого алюминия, при этом 50-70 мас.% извести с содержанием углерода не более 0,2 мас.% вводят непосредственно в смешиваемую шихту при соотношении компонентов шихты, мас.%: окись хрома 65-68, алюминий 25-27, селитра натриевая 4-6, известь с содержанием углерода не более 0,2 мас.% в шихту 2-4, а 30-50 мас.% извести с содержанием углерода не более 0,5 мас.% загружают на колошник за 2-4 мин до окончания проплавления шихты, загрузку и проплавление шихты ведут в одну стадию со скоростью 310-400 кг/м 2 ·мин.

Вариант 2 заявленного способа по п.2 формулы предназначен для получения хрома с содержанием азота не более 0,05 мас.% преимущественно марки Х99Н4. Технический результат достигается тем, что общее количество извести на плавку и количество кальция гидроокиси задают в соотношениях (0,15-0,18):1 и (0,05-0,07):1 к массе расходуемого алюминия, при этом 50-70 мас.% извести с содержанием углерода не более 0,2 мас.% вводят непосредственно в смешиваемую шихту, ангидрид хромовый и бихромат натрия или калия используют в соотношении 1:(0,25-0,40) при соотношении компонентов шихты, мас.%: окись хрома 60-62, алюминий 24,2-26,4, ангидрид хромовый 7,1-8,2, бихромат натрия или калия 1,8-2,4, кальция гидроокись 1,3-1,8, соль поваренная 0,7-1,2, известь с содержанием углерода не более 0,2 мас.% в шихту 2,2-3,2, а остальные 30-50 мас.% извести с содержанием углерода не более 0,5 мас.% загружают на колошник за 2-4 мин до окончания проплавления шихты, загрузку и проплавление шихты ведут в одну стадию со скоростью 330-450 кг/м 2 ·мин, а после слива части шлака в изложницу на гарнисаж загружают на оставшийся жидкий шлак плавикошпатовый (флюоритовый) концентрат в количестве 0,8-1,1 мас.% к массе окиси хрома и после его растворения сливают шлак и металл.

Вариант 3 способа по п.3 формулы разработан для получения хрома с содержанием азота не более 0,01 мас.%.

Для достижения технического результата по этому варианту общее количество извести на плавку и количество кальция гидроокиси задают в соотношениях к массе расходуемого алюминия соответственно (0,15-0,18):1 и (0,08-0,10):1, при этом 60-75 мас.% извести с содержанием углерода не более 0,1 мас.% вводят непосредственно в смешиваемую шихту, ангидрид хромовый и бихромат натрия или калия используют в соотношении 1:(0,7-0,9) при соотношении компонентов шихты, мас.%: окись хрома 55-57, алюминий 24,5-25,5, ангидрид хромовый 6,5-7,5, бихромат натрия или калия 4,9-6,1, кальция гидроокись 2,0-2,5, соль поваренная 0,8-1,0, известь с содержанием углерода не более 0,1 мас.% в шихту 2,5-3,5, а остальные 25-40 мас.% извести с содержанием углерода не более 0,2 мас.% загружают на колошник после окончания проплавления шихты, загрузку и проплавление шихты ведут со скоростью 350-450 кг/м 2 ·мин, при этом плавку проводят на \блок\.

Патентуемые варианты алюминотермического способа производства хрома металлического объединены единым изобретательским замыслом, который состоит в том, что в каждом варианте технический результат достигается оптимизацией термодинамических и кинетических условий протекания восстановительного процесса.

Известно, что присутствие в расплаве алюминотермической шихты флюсующей добавки, в частности оксида кальция, способствует более раннему началу низкотемпературной стадии восстановительного процесса благодаря разрушению оксидной поверхностной пленки на частицах алюминия. Оксид кальция и получающийся в восстановительном процессе глинозем связываются в прочные соединения — алюминаты кальция. Это препятствует образованию трудновосстановимых хроматов кальция и повышает активность оксидов хрома в расплаве, сдвигая равновесие реакции в сторону образования хрома. Для высокотемпературного алюминотермического восстановительного процесса получения хрома металлического предпочтительным шлакообразующим соединением является гексоалюминат кальция, имеющий температуру плавления 1850°С и определяющий температуру плавления конечного шлака плавки [4, 5].

Для связывания образующегося по ходу восстановительного процесса глинозема в гексоалюминат кальция необходимо вводить в шихту 150-155 кг оксида кальция в расчете на 1 т расходуемого на плавку алюминия, что определяет приведенные в вариантах формулы соотношения количества задаваемых извести и кальция гидроокиси к алюминию. Однако введению непосредственно в состав шихты обычно используемой в производстве хрома извести с содержанием углерода 0,6 мас.% препятствует процесс карбидообразования, приводящий к повышению содержания в металле углерода. Практика показывает, что при использовании такой извести даже более ранняя, чем с последними порциями непроплавленной шихты, загрузка извести на колошник по ходу плавки зачастую приводит к повышению содержания углерода в хроме.

Нами установлено, что при проведении плавки в одну стадию ограничение содержания углерода в извести до значений не более 0,2 мас.% по вариантам 1, 2 заявленного способа и не более 0,1 мас.% по варианту 3 позволяет вводить такую известь непосредственно в состав шихты в количестве до 70-75%, а остальную известь с ограниченным содержанием углерода не более 0,5 мас.% по вариантам 1, 2 и не более 0,2 мас.% по варианту 3 следует загружать на колошник по вариантам 1, 2 только с последними порциями непроплавленной шихты, а по варианту 3 только после окончания проплавления шихты.

Загрузка по вариантам 1, 2 указанной извести на колошник ранее чем за 4 мин до окончания проплавления шихты может привести к повышению содержания углерода в хроме. Загрузка же позднее чем за 2 мин до окончания проплавления шихты приводит к неполному растворению извести в шлаке.

Использование по варианту 3 заявленного способа извести в шихту с углеродом более 0,1 мас.% и извести на колошник с углеродом более 0,2 мас.%, а также загрузка извести на колошник до окончания проплавления шихты приводит к значительному повышению содержания углерода в металле.

Указанные приемы использования извести обеспечивают получение основной массы хрома с содержанием углерода не более 0,012 мас.%, что в 2,5 раза ниже допустимого предела по ГОСТ-5905, при этом 35-45% всего металла имеет содержание углерода 0,010 мас.%, что соответствует высшей марке Х99Н1.

Таким образом, во всех заявленных вариантах способа оптимизация термодинамических и кинетических условий процесса достигается дифференцированной регламентацией качества используемой извести по содержанию в ней углерода, увеличением массы расходуемой извести для связывания глинозема в гексоалюминат кальция, определяющий температуру плавления конечного шлака плавки, введением низкоуглеродистой извести непосредственно в состав шихты в количестве до 70-75% от ее общего расхода, что способствует повышению активности оксидов хрома в расплаве и сдвигу равновесия реакции в сторону восстановления хрома, загрузкой остальной части извести на колошник только с последними порциями непроплавленной шихты и проведением восстановительного процесса в одну стадию.

По всем вариантам способа скорость проплавления шихты по сравнению с прототипом возрастает в 1,5-2 раза, что несколько снижает теплопотери процесса и напряженность теплового баланса внепечной алюминотермической плавки, а также уменьшает поглощение расплавом атмосферного азота за счет сокращения продолжительности процесса, что обеспечивает снижение содержания азота в получаемом хроме.

Достигаемое повышение активности оксидов хрома в расплаве способствует получению металла с более низким уровнем содержания в нем остаточного алюминия.

Суммарное снижение уровня содержания примесей обеспечивает повышение содержания хрома в металле.

Отклонения от заданных пределов соотношения компонентов, состава шихты и параметров процесса для всех вариантов патентуемого способа приводят к повышению содержания указанных примесей и снижению содержания хрома в металле.

Увеличение общей массы извести создает избыток оксида кальция, это приводит к образованию трудновосстановимых хроматов кальция и снижение активности оксидов хрома, образуется шлак нежелательного легкоплавкого состава.

При недостатке либо отсутствии флюсующей добавки образующийся в восстановительном процессе оксид алюминия вступает во взаимодействие с оксидами хрома с образованием неограниченных растворов, что снижает активность оксида хрома в расплаве и выход главного продукта — хрома.

Введение непосредственно в смешиваемую шихту более 70-75% извести, равно как и увеличение массы кальция гидроокиси, создает напряженность теплового баланса внепечной плавки и требует увеличения массы термитной добавки, что экономически нецелесообразно. Недостаток кальция гидроокиси, наряду с дисбалансом количества оксида кальция, несколько снижает эффективность дегазации расплава, что приводит к росту содержания азота в металле.

Количество окислителя обусловлено обеспечением нормальной термичности алюминотермической шихты, которая для плавки хрома должна быть в пределах 75-84 кДж/г-атом, и температуры процесса. Избыток или недостаток термитной добавки приводит соответственно к \горячему\ либо \холодному\ ходу процесса и потерям хрома в результате выбросов расплава и шихты или частичному закозлению металла в горне.

При использовании в качестве окислителя ангидрида хромового и бихромата натрия или калия их заявленное соотношение, кроме термичности шихты, связано с обеспечением дегазации расплава. Увеличение доли бихромата приводит к большому пылеуносу шихты и дополнительным потерям хрома; уменьшение же доли бихромата способствует повышению содержания азота в хроме ввиду недостаточной дегазации расплава.

Увеличение скорости загрузки приводит к образованию \завала\ на колошнике непрореагировавшей шихты с выбросами расплава и шихты и нарушению хода плавки. При недостаточной скорости загрузки и проплавления шихты плавка идет с открытым зеркалом расплава и более продолжительное время, значительно возрастают теплопотери, что приводит к частичному \закозлению\ металла на подине плавильного горна и настылеобразованию шлака на футеровке, а также к большему поглощению расплавом азота из воздуха.

Загрузка по варианту 2 плавикошпатового (флюоритового) концентрата на оставшийся жидкий шлак для обеспечения его жидкоподвижности при полном сливе продуктов плавки, дополнительно препятствует поглощению расплавом азота из воздуха. Количество плавикошпатового (флюоритового) концентрата менее 0,8 мас.% к массе окиси хрома не обеспечивает необходимую жидкотекучесть шлака перед полным выпуском, а количество более 1,1 мас.% приводит к повышенной жидкотекучести шлака.

По варианту 3 оптимизация условий протекания восстановительного процесса и исключение контакта струи жидкого металла с атмосферным воздухом при плавке на \блок\ позволяют значительно снизить усвоение азота и получать хром с содержанием азота не более 0,01 мас.%

Изобретение по вариантам 1, 2, 3 заявленного способа поясняется следующими примерами.

Для состава шихты применяют компоненты: окись хрома техническая металлургическая по ГОСТ 2912 и/или по ТУ 645 РК 5604173-005-2000; алюминий первичный по ГОСТ 11069 в виде порошка, окислители натрий азотнокислый технический (селитра) по ГОСТ 828 или ангидрид хромовый технический по ГОСТ 2548 и натрия бихромат технический по ГОСТ 2651 или калия бихромат технический по ГОСТ 2652, известь свежеобожженная молотая с регламентированным содержанием углерода, соль техническая поваренная по ТУ 9192-069-00206527-98, концентрат плавиковошпатовый (флюоритовый) металлургический по ГОСТ 29220, кальция гидроокись. Шихту рассчитывают на 3000-6000 кг окиси хрома.

При подготовке шихты компоненты тщательно перемешивают между собой. Внепечную алюминотермическую плавку на подготовленной шихте по прототипу и по вариантам 1, 2 патентуемого способа проводят с нижним зажиганием шихты в наклоняющемся горне, слив продуктов плавки в стальную нефутерованную изложницу осуществляют наклоном горна, при этом сначала сливают в изложницу 30-40% шлака для образования гарнисажа, а затем после кратковременной выдержки сливают оставшийся в горне шлак и металл под слой шлака. При выплавке хрома низкоазотистого по варианту 2 способа после слива части шлака на гарнисаж загружают в плавильную ванну на оставшийся жидкий шлак плавикошпатовый (флюоритовый) концентрат и после его растворения сливают шлак и металл в изложницу.

Плавку по варианту 3 заявленного способа проводят на \блок\ с нижним зажиганием шихты в стационарном горне одноразового использования.

Пример 1 (прототип). Выплавку хрома металлического проводили по способу внепечной алюминотермической плавки, шихту делили на 2 части. На первой стадии проплавляли шихту состава, % от общего количества компонента на плавку: окись хрома 2940 кг (60%), алюминий 1050 кг (0,885 от стехиометрического на окись хрома), селитра натриевая 240 кг (66,7%), известь с углеродом 0,6 мас.% на колошник 120 кг (40%), со скоростью загрузки шихты 190-230 кг/м 2 ·мин; на второй стадии проплавляли шихту состава, % от общего количества компонента на плавку: окись хрома 1960 кг (40%), алюминий 850 кг (1,12 от стехиометрического на окись хрома), селитра натриевая 120 кг (33,3%), известь с углеродом 0,6 мас.% на колошник 180 кг (60%), со скоростью загрузки шихты 250-270 кг/м 2 ·мин. Выход марки Х99 за кампанию составил 51,1%.

Пример 2 (прототип). Выплавка хрома металлического с содержанием азота не более 0,05 мас.% двухстадийной плавкой. На первой стадии плавили шихту состава, % от общего количества компонента на плавку: окись хрома 2940 кг (60%), алюминий 1140 кг (0,882 от стехиометрического на окись хрома), хромовый ангидрид 450 кг (69,2%), бихромат калия 60 кг (50%), кальция гидроокись 80 кг (44,3%), соль поваренная 30 кг (50%), известь с углеродом 0,6 мас.% на колошник 70 кг (35%), со скоростью загрузки шихты 210-240 кг/м 2 ·мин; на второй стадии проплавляли шихту состава,% от общего количества компонента на плавку: окись хрома 1960 кг (40%), алюминий 980 кг (1,18 от стехиометрического на окись хрома), хромовый ангидрид 200 кг (30,8%), бихромат калия 60 кг (50%), кальция гидроокись 100 кг (55,7%), соль поваренная 30 кг (50%), концентрат плавикопшатовый (флюоритовый) 20 кг (100%), известь с углеродом 0,6 мас.% на колошник 130 кг (65%), со скоростью загрузки шихты 230-270 кг/м 2 ·мин. Выход марки Х99Н4 за кампанию 54,6%.

Предлагаемый способ получения хрома металлического одностадийной плавкой с введением непосредственно в состав шихты особо низкоуглеродистой извести опробован в промышленных условиях по вариантам 1, 2 и на опытно-промышленной выплавке по варианту 3.

Результаты выплавки по известному способу (пример 1 и 2) и предлагаемому (примеры 3-7) приведены в таблице.

Примеры 3, 4 (вариант 1). Проводили одностадийные плавки с последующим выпуском шлака и металла. Масса смешанной шихты на плавку составила: пример 3 — 7575 кг, пример 4 — 7480 кг. Состав шихты на плавки, кг — (мас.%): окись хрома 5000 (пр.3 — 66,0; пр.4 — 66,8), алюминий 1910-1950 (пр.3 — 25,74; пр.4 — 25,5), селитра натриевая 370-385 (пр.3 — 5,08; пр.4 — 4,95), известь с углеродом не более 0,2 мас.% непосредственно в шихте 200-240 (к общей массе извести — пр.3 — 66,7, пр.4 — 57,1; к массе смешанной шихты — пр.3 — 3,17, пр.4 — 2,67; общее соотношение к алюминию — пр.3 — 0,185, пр.4 — 0,183); остальную известь с углеродом не более 0,5 мас.% в количестве 120-150 кг (к общей массе извести — пр.3 — 33,3%, пр.4 — 42,9%) загружали на колошник за 2-4 мин до окончания проплавления шихты, затем 30-40% шлака плавки сливали в изложницу на гарнисаж и после короткой выдержки сливали шлак и металл. Скорость загрузки и проплавления шихты составила: пр.3 — 370, пр.4 — 310 кг/м 2 ·мин.

Выход марки Х99 составил за кампанию 89,1%.

Использование извести непосредственно в шихте с углеродом более 0,2 мас.% и загружаемой на колошник с углеродом более 0,5 мас.%, а также более ранняя по ходу проплавления шихты загрузка извести на колошник приводят к образованию карбида хрома и повышенному содержанию углерода в металле, вплоть до получения несоответствующей продукции.

Превышение общего количества извести на плавку против верхнего предела заданного соотношения к массе алюминия создает избыток оксида кальция и способствует образованию трудновосстановимых хроматов кальция, снижая активность оксида хрома и выход хрома, повышает содержание алюминия в металле.

Недостаток общего количества извести против нижнего предела соотношения к массе алюминия приводит к образованию неограниченных растворов оксида хрома с оксидом алюминия, снижая активность оксида хрома в расплаве и выход хрома, с повышением содержания алюминия в металле.

Введение непосредственно в шихту более 70 мас.% используемой на плавку извести снижает термичность шихты и поэтому требует увеличения массы термитной добавки, что экономически нецелесообразно. Введение в шихту менее 50 мас.% извести недостаточно активизирует процесс, что не позволяет существенно снижать содержание примесей алюминия и углерода в металле.

Превышение скорости загрузки шихты более 400 кг/м 2 ·мин приводит к образованию на колошнике \завала\ непрореагировавшей шихты с выбросами расплава и шихты, нарушению хода плавки, потерям хрома и увеличению содержания алюминия и азота в металле.

При недостаточной скорости загрузки шихты плавка идет с открытым колошником и более продолжительное время, нарушение теплового баланса плавки в результате значительного увеличения теплопотерь приводит к частичному \закозлению\ металла на подине горна и настылеобразованию шлака на футеровке, это снижает выход хрома, увеличивает поглощение расплавом и металлом азота из воздуха и сокращает срок службы футеровки плавильного горна.

Примеры 5, 6. Для получения хрома металлического с содержанием азота не более 0,05 мас.% масса смешанной шихты на плавку составила: пример 5 — 6640 кг, пример 6 — 8292 кг. Загружали и проплавляли в одну стадию шихту состава, кг — (мас.%): окись хрома 4000-5000 (пр.5 — 60,2; пр.6 — 60,3), алюминий 1700-2060 (пр.5 — 25,6; пр.6 — 24,8), ангидрид хромовый 500-600 (пр.5 — 7,5; пр.6 — 7,2), бихромат натрия 130-187 (пр.5 — 1,96; пр.6 — 2,25; соотношение ангидрида к бихромату: пр.5 — (1:0,26); пр.6 — (1:0,31), кальция гидроокись 100-130 (пр.5 — 1,5; пр.6 — 1,6; соотношение к алюминию соответственно 0,059 и 0,063), соль поваренная 50-75 (пр.5 — 0,75; пр.6 — 0,90), известь с углеродом не более 0,2 мас.% непосредственно в шихту 160-240 (к общей массе извести: пр.5 — 59,2; пр.6 — 66,7; к массе смешанной шихты: пр.5 — 2,4; пр.6 — 2,9; общее соотношение к алюминию: пр.5 — 0,159; пр.6 — 0,175); остальную известь с углеродом не более 0,5 мас.% в количестве 110-120 (к общей мессе извести: пр.5 — 40,8; пр.6 — 33,3) загружали на колошник за 2-4 мин до окончания проплавления шихты; после проплавления шихты и короткой выдержки для осаждения корольков металла сливали 30-40% шлака в изложницу на гарнисаж; на оставшийся в горне шлак загружали 40 кг (к массе окиси хрома: пр.5 — 1,0%; пр.6 — 0,8%) плавикошпатового (флюоритового) концентрата и после его растворения сливали продукты плавки полностью. Скорость загрузки и проплавления шихты составила: пр.5 — 345, пр.6 — 410 кг/м 2 ·мин.

Выход марки Х99Н4 за кампанию составил 85,8%.

Влияние и последствия отклонений от заданных по варианту 2 способа переделов соотношений компонентов, состава шихты, параметров процесса и допустимого содержания углерода в частях извести аналогичны изложенным в примерах 3, 4.

Пример 7 (вариант 3). Для получения хрома с содержанием азота не более 0,01 мас.% по варианту 3 формулы проплавляли в стационарном горне одноразового использования в одну стадию с нижним зажиганием шихты, плавкой на \блок\ шихту состава, кг — (мас.%): окись хрома 3000 (56,8), алюминий 1320 кг (25,0), ангидрид хромовый 375 (7,1; соотношение к бихромату (1:0,73)), бихромат натрия 275 (5,2), кальция гидроокись 120 (2,27, соотношение к алюминию 0,091), соль поваренная 45 (0,85), известь с углеродом не более 0,1 мас.% в шихту 145 (2,75; соотношение к алюминию всей массы извести 0,159; 69% к общей массе извести); известь с углеродом не более 0,2 мас.% в количестве 65 кг (31% к массе извести) загружали на жидкий шлак после окончания проплавления шихты. Загрузку и проплавление шихты вели со скоростью 380-410 кг/м 2 ·мин. Проведены две опытно-промышленные плавки.

Состав полученного металл, мас.%: хром 99,50, алюминий 0,02-0,04, углерод 0,010-0,011, азот 0,008, что соответствует высшей марке Х99Н1 по ГОСТ 5905-79 и марке RACr99 рафинированного алюминотермического хрома по стандарту ИСО 10387-94.

Таблица
ПОКАЗАТЕЛИПРИМЕРЫ
1 прототип2 прототип34567
вариант 1вариант 2вар.3
1. Шихта на плавку, кг2940294050005000400050003000
— окись хрома19601960
— алюминий1050114019501910170020601320
850980
— селитра натриевая240385370
120
— ангидрид хромовый450500600375
200
— бихромат натрия60130187275
60
— известь (в шихту)240200160240145
— известь (на колошник)1207012015011012065
180130
— кальция гидроокись80100130120
100
— соль поваренная30507545
30
— концентрат плавиковошпатовый (флюоритовый)40 на шлак40 на шлак
20
2. Скорость проплавления шихты кг/м 2 ·мин205230370310345410380
260250
3. Химический состав металла,%
хром (Cr)98,899,299,1799,1999,3999,4599,50
алюминий (Al)0,310,250,120,070,090,060,04
углерод (С)0,0200,0150,0100,0120,0110,0100,010
азот (N)0,17-0,25*0,0400,16*0,24*0,0220,0180,008
4. Выход высших марок за кампанию:
марка Х99,%51,189,1
марка Х99Н4,%54,685,8
марка Х99Н1 (RACr99),%ожид. 70
* Примечание: содержание азота не регламентировано по ГОСТ.

Разработан в трех вариантах технологически несложный способ получения хрома металлического алюминотермического повышенного качества при использовании в шихте в качестве флюсующей добавки высококачественной извести с жестко лимитированным содержанием углерода. В предлагаемом изобретении найдены оптимальные соотношения массы извести к алюминию и частей извести, вводимой непосредственно в смесь шихты и загружаемой на колошник; определены допустимые пределы содержания углерода в используемой извести, что предупреждает образование карбидов хрома в металле. Оптимизация термодинамических условий протекания восстановительного процесса увеличивает в 1,5-2 раза скорость одностадийного проплавления шихты и обеспечивает массовый выход хрома металлического с повышенным содержанием хрома при снижении содержания алюминия, углерода и азота в металле.

По предложенному способу выход высших марок Х99 хрома рядового и Х99Н4 хрома низкоазотистого по ГОСТ 5905 составляет 85-90% от общего выпуска, в хроме металлическом марки Х99 35-39% металла имеет содержание углерода не более 0,010 мас.% и 76-80% металла содержит не более 0,012 мас.% углерода; в хроме марки Х99Н4 70-74% металла имеет содержание хрома 99,2-99,5 мас.%, 52-55% металла имеет содержание азота 0,020-0,030 мас.% и 76-79% металла имеет содержание углерода не более 0,012 мас.%, в том числе 40-43% с содержанием углерода не более 0,010%.

Способ позволяет также плавкой на \блок\ получать хром рафинированный марки Х99Н1 с содержанием азота не более 0,01 мас.% без применения специального аппаратурного оформления процесса.

1. Лякишев Н.П. и др. Алюминотермия. М.: Металлургия, 1978, с.27-28, 248-253.

2. RU, патент 2027788, кл. С 22 В 34/32, 1990.

3. RU, патент 2103401, кл. С 22 В 34/32,1996.

4. Н.П.Лякишев, М.И.Гасик. Металлургия хрома, М.: ЭЛИЗ, 1999 г., стр.304-307, 508-513.

5. А.С.Дубровин. Металлотермия специальных сплавов. Челябинск: ЮУрГУ, 2002, стр. 76-80, 91-94, 166-169, 191-192.

1. Способ алюминотермического получения хрома металлического, включающий подготовку и проплавление шихты, содержащей окись хрома, алюминий, окислитель — селитру натриевую, известь, и выпуск продуктов плавки, отличающийся тем, что общее количество извести задают в соотношении (0,16-0,19):1 к массе алюминия, при этом 50-70 мас.% извести с содержанием углерода не более 0,2 мас.% вводят непосредственно в шихту при соотношении компонентов шихты, мас.%: окись хрома 65-68, алюминий 25-27, селитра натриевая 4-6, известь с содержанием углерода не более 0,2 мас.% в шихту 2-4, а 30-50 мас.% извести с содержанием углерода не более 0,5 мас.% загружают на колошник за 2-4 мин до окончания проплавления шихты, загрузку и проплавление шихты ведут в одну стадию со скоростью 310-400 кг/м 2 ·мин.

2. Способ алюминотермического получения хрома металлического, включающий подготовку и проплавление шихты, содержащей окись хрома, алюминий, окислитель — ангидрид хромовый и бихромат натрия или калия, известь, кальция гидроокись, соль поваренную, концентрат плавикошпатовый и выпуск продуктов плавки, отличающийся тем, что для получения хрома с содержанием азота не более 0,05 мас.% общее количество извести на плавку и количество кальция гидроокиси задают в соотношении к массе расходуемого алюминия соответственно (0,15-0,18):1 и (0,05-0,07):1, при этом 50-70 мас.% извести с содержанием углерода не более 0,2 мас.% вводят непосредственно в шихту, ангидрид хромовый и бихромат натрия или калия используют в соотношении 1:(0,25-0,40) при соотношении компонентов шихты, мас.%: окись хрома 60-62, алюминий 24,2-26,4, ангидрид хромовый 7,1-8,2, бихромат натрия или калия 1,8-2,4, кальция гидроокись 1,3-1,8, соль поваренная 0,7-1,2, известь с содержанием углерода не более 0,2 мас.% в шихту 2,2-3,2, а остальные 30-50 мас.% извести с содержанием углерода не более 0,5 мас.% загружают на колошник за 2-4 мин до окончания проплавления шихты, загрузку и проплавление шихты ведут в одну стадию со скоростью 330-450 кг/м 2 ·мин, а после слива части шлака в изложницу на гарнисаж загружают на оставшийся жидкий шлак плавикошпатовый концентрат в количестве 0,8-1,1 мас.% к массе окиси хрома и после его растворения производят слив шлака и металла.

3. Способ алюминотермического получения хрома металлического, включающий подготовку и проплавление шихты, содержащей окись хрома, алюминий, окислитель — ангидрид хромовый и бихромат натрия или калия, известь, кальция гидроокись, соль поваренную, отличающийся тем, что для получения хрома с содержанием азота не более 0,01 мас.% общее количество извести и количество кальция гидроокиси задают в соотношении к массе алюминия соответственно (0,15-0,18):1 и (0,08-0,10):1, при этом 60-75 мас.% извести с содержанием углерода не более 0,1 мас.% вводят непосредственно в шихту, ангидрид хромовый и бихромат натрия или калия используют в соотношении 1:(0,7-0,9) при соотношении компонентов шихты, мас.%: окись хрома 55-57, алюминий 24,5-25,5, ангидрид хромовый 6,5-7,5, бихромат натрия или калия 4,9-6,1, кальция гидроокись 2,0-2,5, соль поваренная 0,8-1,0, известь с содержанием углерода не более 0,1 мас.% в шихту 2,5-3,5, а остальные 25-40 мас.% извести с содержанием углерода не более 0,2 мас.% загружают на колошник после окончания проплавления шихты, загрузку и проплавление шихты ведут со скоростью 350-450 кг/м 2 ·мин, при этом плавку проводят на «блок».

Алюмотермический способ получения хрома

Основной минерал, из которого промышленность получает хром, — это хромовая шпинель переменного состава с общей формулой (Mg, Fe) О · (Сr, Al, Fе)2O3. Хромовая руда носит название хромитов или хромистого железняка (потому, что почти всегда содержит и железо).

Хромиты идут большей частью на выплавку феррохрома. Это — один из самых важных ферросплавов, абсолютно необходимый для массового производства легированных сталей.

Ферросплавы — сплавы железа с другими элементами, применяемыми главным обрядом для легирования и раскисления стали. Феррохром содержит не менее 60% Cr.

Хромистый железняк [Fe(CrO2)2] является «иповной рудой для получения хрома. Извлечение металлического хрома производится путем восстановления его при плавке.

В промышленности получают чистый хром и сплав его с железом — феррохром. Феррохром получают при восстановлении хромистого железняка углем:

Чистый хром получают восстановлением оксида хрома методом алюминотермии:

Получение чистого хрома — дорогой и трудоемкий процесс. Поэтому для легирования стали применяют главным образом феррохром, который получают в дуговых электропечах непосредственно из хромита. Восстановителем служит кокс. Содержание окиси хрома в хромите должно быть не ниже 48%, а отношениеCr: Fe не менее 3: 1.

Полученный в электропечи феррохром обычно содержит до 80% хрома и 4. 7% углерода (остальное — железо).

В промышленных масштабах чистый металлический хром производят электролитическим и алюмотермическим способами. Общий объем мирового потребления чистого хрома составляет около 15 тыс. тонн. Доля производства электролитического хрома — около 5000 тонн. Распределение хрома по областям конечного использования имеет следующий вид: суперсплавы (жаропрочные сплавы) — 44%, алюминиевые сплавы — 16%, сварочные (наплавочные) материалы-15%, короззионностойкие сплавы — 9%, распыляемые мишени для технологий тонких пленок и др. — 16%.

Алюмотермический хром стандартной чистоты содержит повышенное содержание железа, алюминия, углерода, кислорода и азота. Несколько ниже содержание этих примесей в алюмотермическом хроме двойной дегазации. Электролитический хром чистотой производят электролизом путем осаждения на катодах из растворов соединений трех или шести валентного хрома.

Хром изготовляют дробленным в кусках массой не более 10 кг. Поставляется в стальных барабанах по 250 кг. Поверхность кусков не имеет резко выраженных включений шлака, огнеупоров и других инородных материалов. Плотность 7,53 г/см3; температура плавления 1830-1870°С.

Из хромита получают и элементарный, металлический хром. Производство технически чистого хрома (97. 99%) основано на методе алюминотермии, открытом еще в 1865 г. известным русским химиком Н.Н. Бекетовым. Сущность метода — в восстановлении окислов алюминием, реакция сопровождается значительным выделением тепла.

Но предварительно надо получить чистую окись хрома Сr2О3. Для этого тонко измельченный хромит смешивают с содой и добавляют к этой смеси известняк или окись железа. Вся масса обжигается, причем образуется хромат натрия:

Затем хромат натрия выщелачивают из обожженной массы водой; щелок фильтруют, упаривают и обрабатывают кислотой. В результате получается бихромат натрия Na2Cr2O7. Восстанавливая его серой или углеродом при нагревании, получают зеленую окись хрома.

Металлический хром можно получить, если чистую окись хрома смешать с порошком алюминия, нагреть эту смесь в тигле до 500. 600°C и поджечь с помощью перекиси бария, Алюминий отнимает у окиси хрома кислород. Эта реакция Сr2О3 + 2Аl > Аl2O3 + 2Сr — основа промышленного (алюминотермического) способа получения хрома, хотя, конечно, заводская технология значительно сложнее. Хром, полученный алюминотермически, содержит алюминия и железа десятые доли процента, а кремния, углерода и серы — сотые доли процента.

Используют также силикотермический способ получения технически чистого хрома. В этом случае хром из окиси восстанавливается кремнием по реакции

Эта реакция происходит в дуговых печах. Для связывания кремнезема в шихту добавляют известняк. Чистота силикотермического хрома примерно такая же, как и алюминотермического, хотя, разумеется, содержание в нем кремния несколько выше, а алюминия несколько ниже. Для получения хрома пытались применить и другие восстановители — углерод, водород, магний. Однако эти способы не получили широкого распространения.

Хром высокой степени чистоты (примерно 99,8%) получают электролитически.

Технически чистый и электролитический хром идет главным образом на производство сложных хромовых сплавов.

Ответ

Алюмотермия — это термохимический процесс восстановления, в основном, металлов, с более слабым электрохимическим потенциалом из их соединений путём высокотемпературного сплавления алюминия с побочными веществами.
Например,

2Al + Cr2O3 -> Al2O3 + 2Cr

Как видно из уравнения, хром восстановился до 0, а алюминий окислился до 3+. В итоге, произошла алюмотермическая реакция восстановления хрома.

В зависимости от требуемой степени чистоты металла существует несколько промышленных способов получения хрома.

Возможность алюмотермического восстановления оксида хрома (III) была продемонстрирована еще Фридрихом Вёлером в 1859 однако в промышленном масштабе этот метод стал доступен, как только появилась возможность получения дешевого алюминия. Промышленное алюмотермическое получение хрома началось с работ Гольдшмидта, которому впервые удалось разработать надежный способ регулирования сильно экзотермического (а, следовательно, взрывоопасного) процесса восстановления:

Предварительно смесь равномерно прогревается до 500-600° С. Восстановление можно инициировать либо смесью перекиси бария с порошком алюминия, либо запалом небольшой порции шихты с последующим добавлением остального количества смеси. Важно, чтобы выделяющейся в процессе реакции теплоты, хватило на расплавление образующегося хрома и его отделение от шлака. Хром, получающийся алюмотермическим способом, обычно содержит 0,015-0,02% С, 0,02% S и 0,25-0,40% Fe, а массовая доля основного вещества в нем составляет 99,1-99,4% Cr. Он очень хрупок и легко размалывается в порошок.

При получении высокочистого хрома используются электролитические методы, возможность этого в 1854 показал Бунзен, подвергший электролизу водный раствор хлорида хрома. Сейчас электролизу подвергают смеси хромового ангидрида или хромоаммонийных квасцов с разбавленной серной кислотой. Выделяющийся в процессе электролиза хром содержит растворенные газы в качестве примесей. Современные технологии позволяют получать в промышленном масштабе металл чистотой 99,90-99,995% с помощью высокотемпературной очистки в потоке водорода и вакуумной дегазации. Уникальные методики рафинирования электролитического хрома позволяют избавляться от кислорода, серы, азота и водорода, содержащихся в «сыром» продукте.

Есть еще несколько менее значимых способов получения металлического хрома. Силикотермическое восстановление основано на реакции:

Восстановление кремнием, хотя и носит экзотермический характер, требует проведения процесса в дуговой печи. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция.

Восстановление оксида хрома (III) углем применяется для получения высокоуглеродистого хрома, предназначенного для производства специальных сплавов. Процесс также ведется в электродуговой печи.

В процессе Ван Аркеля — Кучмана — Де Бура применяется разложение иодида хрома (III) на нагретой до 1100° С проволоке с осаждением на ней чистого металла.

Хром можно также получать восстановлением Cr2O3 водородом при 1500° С, восстановлением безводного CrCl3 водородом, щелочными или щелочноземельными металлами, магнием и цинком.

Сегодня общий объем потребления чистого хрома (не менее 99% Cr) составляет около 15 тысяч тонн, из них около трети приходится на электролитический хром. Мировым лидером в производстве высокочистого хрома является английская фирма Bell Metals. Первое место по объемам потребления занимают США (50%), второе — страны Европы (25%), третье — Япония. Рынок металлического хрома довольно нестабилен, и цены на металл колеблются в широком диапазоне.

Физические свойства и химические свойства. Хром — серебристый металл с плотностью 7200 кг/м 3 . Определение температуры плавления чистого хрома представляет собой чрезвычайно трудную задачу, так как малейшие примеси кислорода или азота существенно влияют на величину этой температуры. По результатам современных измерений она равняется 1907° С. Температура кипения хрома 2671° С. Совершенно чистый (без газовых примесей и углерода) хром довольно вязок, ковок и тягуч. При малейшем загрязнении углеродом, водородом, азотом и т.д. становится хрупким, ломким и твердым. При обычных температурах имеет кубическую объемноцентрированную решетку. Химически хром довольно инертен вследствие образования на его поверхности прочной тонкой пленки оксида. Он не окисляется на воздухе даже в присутствии влаги, а при нагревании окисление проходит только на поверхности. Хром пассивируется разбавленной и концентрированной азотной кислотой, царской водкой, и даже при кипячении металла с этими реагентами растворяется лишь незначительно. Пассивированный азотной кислотой хром, в отличие от металла без защитного слоя, не растворяется в разбавленных серной и соляной кислотах даже при длительном кипячении в растворах этих кислот, тем не менее, в определенный момент начинается быстрое растворение, сопровождающееся вспениванием от выделяющегося водорода — из пассивной формы хром переходит в активированную, не защищенную пленкой оксида:

Если в процессе растворения добавить азотной кислоты, то реакция сразу прекращается — хром снова пассивируется.

При нагревании металлический хром соединяется с галогенами, серой, кремнием, бором, углеродом и некоторыми другими элементами:

При нагревании хрома с расплавленной содой на воздухе, нитратами или хлоратами щелочных металлов получаются соответствующие хроматы (VI):

Соединения хрома. Хром образует множество химических соединений, в которых он может находиться во всех степенях окисления от 0 до +6. Соединения хрома очень разнообразны по цвету: белые, синие, зеленые, коричневые, красные, желтые, оранжевые, фиолетовые и черные. Устойчивыми среди них являются лишь те, в которых хром трех — и шестивалентен. Хлорид хрома (II) CrCl2, или более правильно Cr2Cl4, в безводном состоянии представляет собой белые кристаллы, расплывающиеся на воздухе, его Тпл 815° С. Образует ди-, три — и тетрагидрат. Катион Cr 2+ бесцветен, но в водных растворах находится в гидратированном состоянии и окрашен в синий цвет. Гидрат хлорида хрома (II) можно получить растворением металлического хрома в соляной кислоте без доступа воздуха или восстановлением водного раствора хлорида хрома (III) цинком в кислой среде без доступа воздуха:

Безводная соль получается путем взаимодействия хрома с газообразным хлороводородом при температуре красного каления или восстановлением безводного хлорида хрома (III) водородом при 450° С:

Хлорид хрома (II) — очень сильный восстановитель, легко окисляется даже кислородом воздуха, что используется в газовом анализе для количественного поглощения О2. Находит ограниченное применение при получении хрома электролизом расплавов солей и хроматометрии. Оксид хрома (III) Cr2O3, представляет собой зеленые микрокристаллы с плотностью 5220 кг/м 3 и высокой температурой плавления (2437° С). Его можно получить при непосредственном взаимодействии элементов, прокаливанием нитрата хрома (III) или хромового ангидрида, разложением хромата или дихромата аммония, нагреванием хроматов металлов с углем или серой:

Оксид хрома (III) проявляет амфотерные свойства, но весьма инертен и его трудно растворить в водных кислотах и щелочах. При сплавлении с гидроксидами или карбонатами щелочных металлов переходит в соответствующие хроматы:

Твердость кристаллов оксида хрома (III) соизмерима с твердостью корунда, поэтому Cr2O3 является действующим началом многих шлифовальных и притирочных паст в машиностроении, оптической, ювелирной и часовой промышленности. Его также применяют в качестве зеленого пигмента в живописи и для окрашивания некоторых стекол, как катализатор гидрирования и дегидрирования некоторых органических соединений. Оксид хрома (III) довольно токсичен. Попадая на кожу, способен вызывать экзему и другие кожные заболевания. Особенно опасно вдыхание аэрозоля оксида, так как это может вызвать тяжелые заболевания. ПДК 0,01 мг/м 3 . Профилактика — использование средств индивидуальной защиты.

Хлорид хрома (III) CrCl3, в безводном состоянии кристаллическое вещество, имеющее окраску цветов персикового дерева (близкая к фиолетовой), трудно растворимое в воде, спирте, эфире и пр. даже при кипячении. Однако в присутствии следовых количеств CrCl2 растворение в воде наступает быстро с большим выделением тепла. Может быть получен при взаимодействии элементов при температуре красного каления, обработкой хлором смеси оксида металла и угля при 700-800° С, или взаимодействием CrCl3 с парами CCl4 при 700-800° С:

Образует несколько изомерных (см. ИЗОМЕРЫ) гексагидратов, свойства которых зависят от числа молекул воды, находящихся во внутренней координационной сфере металла. Хлорид гексааквахрома (III) (фиолетовый хлорид Рекура) [Cr (H2O) 6] Cl3 — кристаллы серовато-синего цвета, хлорид хлорпентааквахрома (III) (хлорид Бьеррума) [Cr (H2O) 5Cl] Cl2·H2O — гигроскопичное светло-зеленое вещество; хлорид дихлортетрааквахрома (III) (зеленый хлорид Рекура) [Cr (H2O) 4Cl2] Cl·2H2O — темно-зеленые кристаллы. В водных растворах устанавливается термодинамическое равновесие между тремя формами, зависящее от многих факторов. Структуру изомера можно определить по количеству осаждаемого им хлорида серебра из холодного азотнокислого раствора AgNO3, так как хлорид-анион, входящий во внутреннюю сферу, с катионом Ag + не взаимодействует. Безводный хлорид хрома применяется для нанесения покрытий хрома на стали химическим осаждением из газовой фазы, является составной частью некоторых катализаторов. Гидраты CrCl3 — протрава при крашении тканей. Хлорид хрома (III) токсичен.

Хромокалиевые квасцы K2SO4·Cr2 (SO4) 3·24H2O, темно-фиолетовые кристаллы, довольно хорошо растворимые в воде. Могут быть получены при выпаривании водного раствора, содержащего стехиометрическую смесь сульфатов калия и хрома, или восстановлением дихромата калия этанолом:

Хромокалиевые квасцы применяются главным образом в текстильной промышленности, при дублении кожи.

Оксид хрома (VI) (хромовый ангидрид) CrO3, расплывающиеся на воздухе красные кристаллы, легко растворимые в воде (до 68,2%). Тпл=197° С (с частичным разложением). Легче всего получается при добавлении концентрированной серной кислоты к насыщенному раствору дихромата натрия или калия или обработкой раствором H2SO4 хромата бария с последующей перекристаллизацией CrO3 из водного раствора:

При растворении в воде, в зависимости от концентрации, образует хромовые кислоты различного состава:

Хромовый ангидрид — сильный окислитель. Этиловый спирт при соприкосновении со свежеприготовленным CrO3 воспламеняется. Область применения: отбеливание различных материалов, пигмент в производстве стекла, протрава при крашении тканей, компонент пассивирующих растворов для металлов, полупродукт в электролитическом получении хрома. Оксид хрома (VI) очень ядовит (I класс опасности), смертельная доза для человека (перорально) 0,6 г. Меры профилактики при работе: использование средств индивидуальной защиты, соблюдение правил личной гигиены.

Хромат калия K2CrO4, светло-желтые кристаллы, хорошо растворимые в воде. Может быть получен при сплавлении Cr2O3 с KOH в присутствии окислителей, окислением щелочных растворов Cr 3+ , подщелачиванием раствора дихромата калия:

Хромат калия — сильный окислитель. Применяется при дублении кож, отбеливании воска, как протрава в текстильной промышленности, в производстве красителей. ПДК 0,01 мг/м 3 (в пересчете на CrO3).

Дихромат калия (хромпик) K2Cr2O7, оранжевое кристаллическое вещество, умеренно растворимое в воде (13% при 25°). Получается при подкислении водного раствора хромата калия, взаимодействием гидроксида или карбоната калия с хромовым ангидридом:

Дихромат калия — сильный окислитель, ядовит. Области применения: в производстве спичек, при дублении кож, протрава при крашении тканей, в лабораторной практике, ингибитор коррозии металлов и сплавов. Широко известна так называемая хромовая смесь, содержащая дихромат калия, концентрированную серную кислоту и немного воды. Хромовая смесь находит применение в лабораторной практике в качестве эффективного средства для мытья химического стекла, обращаться с ней нужно крайне осторожно.

Биологическая роль хрома. Хром — микроэлемент, необходимый для нормального развития и функционирования человеческого организма. Установлено, что в биохимических процессах принимает участие только трехвалентный хром. Важнейшая его биологическая роль состоит в регуляции углеводного обмена и уровня глюкозы в крови. Хром является составной частью низкомолекулярного комплекса — фактора толерантности к глюкозе (GTF), который облегчает взаимодействие клеточных рецепторов с инсулином, уменьшая, тем самым, потребность в нем организма. Фактор толерантности усиливает действие инсулина во всех метаболических процессах с его участием. Кроме того, хром принимает участие в регуляции обмена холестерина и является активатором некоторых ферментов.

Хром и жизнь. Содержание хрома в организме человека составляет 6-12 мг. Точные сведения о физиологической потребности человека в этом элементе отсутствуют, кроме того, она сильно зависит от характера питания (например, сильно возрастает при избытке сахара в рационе). По разным оценкам норма ежедневного поступления хрома в организм составляет 20-300 мкг. Показателем обеспеченности организма хромом служит содержание его в волосах (норма 0,15-0,5 мкг/г). В отличие от многих микроэлементов, содержание хрома в тканях организма (за исключением легочной), по мере старения человека, снижается.

Концентрация элемента в растительной пище на порядок меньше его концентрации в тканях млекопитающих. Особенно высоко содержание хрома в пивных дрожжах, кроме того, в заметных количествах он есть в мясе, печени, бобовых, цельном зерне. Дефицит хрома в организме может вызвать диабетоподобное состояние, способствовать развитию атеросклероза и нарушению высшей нервной деятельности.

Уже в сравнительно небольших концентрациях (доли миллиграмма на м 3 для атмосферы) все соединения хрома оказывают токсическое действие на организм. Особенно опасны в этом отношении растворимые соединения шестивалентного хрома, обладающие аллергическим, мутагенным и канцерогенным действием.

Применение хрома. Использование хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.

Значительное количество хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr 3+ — примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями хрома протравливают ткани при крашении. Некоторые соли хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO4, ZnCrO4, SrCrO4 — как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.


источники:

http://findpatent.ru/patent/226/2260630.html

http://vemiru.ru/info/aljumotermicheskij-sposob-poluchenija-hroma/