Пользуясь инвариантами упростить уравнения следующих парабол

Упрощение уравнений кривых 2-го порядка

Упрощение уравнений кривых 2-го порядка

  • Упрощение уравнения кривой 2-го порядка Н°1.Уравнение y = axh — \ — bx — <- c. в этом разделе описывается применение преобразований координат для упрощения уравнения 2-й строки. Давайте начнем с примера. Предположим, вы хотите найти линию, которая соответствует уравнению. у = 12л:+ 9.(!) объедините члены,

содержащие x, и перепишите это уравнение. вы добавите выражение в скобках с полным квадратом, вы получите: у = 3(х *-4х + 4)+ 9-12 Или то же самое у + 3 = 3(ок-2)’. (2) Это исходное уравнение (1), но только если группа членов отличается. Предположим, что здесь система координат переведена и начало

координат перемещено в точку 0 (p, q).Тогда старые координаты всех точек плоскости (x, y) представляются новыми координатами(xlt бьется по формуле). х = ХВ + р, г = г \ + Людмила Фирмаль

Теорема. соответствует параболе, полученной из параболы у = АХ *(7) Используйте параллельную передачу. Y、\ ыы З 4 * -/ −2 __ N л Дж 0 и C> 0 ( * ).И понятно, что это Λ1> 0.In дело в том, что если M = 0, то выражение (17) не является кривой, а соответствует точке, как в Примере (13), а неравенство 0 приводит к тому, что нет ничего, что соответствует выражению (17), например (12).Поэтому остается только возможность M> 0. Перепишите выражение (17) в следующий

формат •) Понятно, что это Еф 0.В противном случае выражение(11) будет иметь вид Ax * — * — Dx — * + ^ = 0 и будет соответствовать паре строк[подобно выражению(16)]. Рычание (15)]вообще никакого ответа «9 мая внимательно следите за процессом умозаключения. Но учтите, что вы не хотите запоминать выражение ru q, At. Do не загружайте ненужные детали в память. •* * ) В противном случае измените знак

на обеих сторонах уравнения(17). Ич I_1 „LG +“ LG-1 Или,=(это、 Дроби положительные), в виде] ФЛ-П-21-1 * б% Это эллиптическое уравнение. Необходимо учитывать, когда А и С — это количество различных знаков. В противном случае, поскольку он изменяет знак с обеих сторон выражения (17), мы можем предположить, что O, C 0, C 0.Переписывание формулы (18) из Формулы (17) если вы поставите — = ^ = — b, он достигнет уравнения. О1-б * ’ То есть к гиперболическому уравнению. Теорема доказана. Замечание. 1) метод доказательства теоремы, примененный к определенному уравнению, фактически делает это уравнение каноническим. 2)из доказательства

теоремы ясно, что кривая, соответствующая уравнению*). Ах * + ТИЦ * ’\ — ДХ + ЕУ + Ф = 0、 Что это? а) LS = O парабола、 B) LS] > 0 эллипс、 в) преувеличение препарата (19) Где L обозначает совокупность всех остальных терминов. Понятно, что L не включает в себя 2-й член по отношению к xx. In в частности, L не включает продукт. запишем все члены формулы (19), включая x% Vy, отдельно. [- 2A sin 0 cos 0 + V (cos9 0-sin 90)+2Csin 0 cos 0] и позже 2sin

0 cos 0 = sin 20, cos90-sin9 0 = cos20、 Указанная группа членов может быть записана следующим образом [В COS 20-(л-с) грех 20] Xyyv Наша цель-выбрать такой угол 0, чтобы в Формуле (19) не было членов, содержащих произведение XYY. I cos 20-(Л-С) sin 20 = 0 (Л-с) грех 20 = потому что я 26、 Или наконец-то (21) Поскольку любое вещественное число действует как касательная к углу, всегда будет

существовать угол 0, удовлетворяющий соотношению (21) (для A, B, C).Но это также означает, что с помощью правильного вращения системы координат уравнение(10) всегда можно преобразовать в уравнение, не содержащее произведения координат. Замечание. 1) Если Λ= C, то уравнение (21) теряет свою meaning. In в этом случае он должен быть изменен на равенство (20). cos 20 = 0、 То есть cos 20 =

0 (ведь мы будем считать Bf 0).Однако это 20 = 90°, то есть 6 = 45°. Итак, при A = C нужно повернуть систему координат на 45°). 2) применяя метод доказательства теоремы к конкретному уравнению, мы можем сделать это уравнение каноническим. Однако существуют и более удобные методы для этой цели. Мы не будем

их рассматривать. (20 )) Или то же самое 3) по отношению к уравнению (10) возникают следующие критерии: кривая**) соответствует уравнению Топорик% + Ву + Су *-+ ДХ + ЕС + Ф = 0、 Я а) парабола при 4AC= B * t B) 4i4c> 5 *овал、 В) гипербола на 4 Это утверждение ничего не доказывает. в N°4.Образцы. Гипербола из-за асимптот. 1) рассмотрим уравнение 8x *-16 * + память+ 12y-4 =

0 Перепишите в форму 8С 1-2лг) + ЗСУ, — н > 0 = 4 Или дополните выражение в скобках до полного квадрата、 8 (f-2 * + 1)+ ЗСУ* + 4 >> + 4)= 24。 Отсюда (

!) ’. (y + 2) ’ 3 1 8 Перемещая начало координат в точку Oi (l, −2), мы делаем параллельный перенос системы. На новой оси уравнение линии имеет вид: 3 + 4- Он представляет собой эллипсоид с полу-оси Y3 и г-8.Этот трюк (новый! Обратите внимание,

что он находится на оси ординаты). 2) анализируйте более сложные примеры 4gv + 24hu + Tsu1-24kh-82u + 15 =0.(22) Начните с нахождения угла 0. Исчезновение произведения координат. Согласно (21) = Дж 482v = 4 ^ P = _T-123) Потому Что L = 4, B = 24, C = 11、 в pa 2tg6 О I A 2tg0 24 Итак, tgO — это 2-е уравнение^ _ q = — y или 12 tg90-7 tg 6-12 = 0. 4, 3.

Это уравнение удовлетворяет tg0 = -J и ТГ б= -. Неинтересно брать 0 из этих углов, потому что любой из этих углов удовлетворяет соотношению (23), но это все, что вам нужно. Возьмите по мере необходимости Угол 0 — это угол tg =0-.As [известно cos0 =± Так и в нашем случае cos0=:+=!(24)) И затем грех 0 = tg0cos0=± -^. (25) Выбор символов равенства (24) и, следовательно, (25) также свободен здесь. Конечно.、 Четыре если вы выберете tgO= -^, вы уже заявили,

что это гарантирует реализацию соотношения(23).Выберите Войти (24) cos 9 = 4. грех 0 = 4 ″» Формула преобразования координат при повороте системы на этот угол 0 принимает следующий вид: ДжейТи = а£л-4yLi у = у * У1. (26) Назначьте эти выражения выражению (22) в виде 4 >-y -1 bdg,-bu,+ 3 = 0.(27 )) Естественно, новое уравнение не включает в себя произведение. Выполните дальнейшие преобразования, как в предыдущем примере. То есть, напишите(27)

в виде: 4(>-4 * 1 + 4)-(y!+ 6y1 + 9)= 4 Или 1 4 Затем сделайте параллельный перенос системы и переместите начало координат в точку Oj (2, −3).Если вновь приобретенные оси обозначаются 0 \ X% и 0 ^ ur, то для xx = x2—2, yx = yb-3, а для оси 0 \ X^ уравнение прямой принимает вид: −1 т т т т Итак, эта линия является гиперболой

полуосей 1 и 2.Асимптотическая линия оси oijc| V имеет уравнение y1 =±2x%.Центром симметрии гиперболы является точка Oj. [В системе ohuh его координаты Xi = 2, yi =-3.So, согласно (26) системы Ohu, координаты точки 0\: = 3.6 и j»=-0.2. Чтобы нарисовать гиперболу на чертеже, сначала 3 4 поверните систему на угол cos0 = y, sin 6= -^ -. Этот угол находится в диапазоне от 0 до 90°и может быть легко настроен из тригонометрии известным способом. Если вы получаете

систему Ox / y / таким образом、 Найдите в нем точку Ot (2, −3) и постройте систему 77 Показаны характерные прямоугольники и асимптоты гиперболы(22), а также сама эта гипербола. 3) Рассмотрим другой пример, важный в теории. Нам нужно посмотреть на кривую. Ху = А. (28) Поскольку в этом уравнении A = C (=0), по замечаниям 1), система должна быть повернута на 45°.Для

значения этого угла, равного 0, форма выражения преобразования координат имеет вид Если вы подставите эти выражения в (28)、 Си-ильный = 2а、 (29) (28) И это равносторонняя гипербола (в af 0).Его асимптоты делят пополам углы между осями симметрии. Но ось симметрии гиперболы (29) является новой! Это координатная ось, поэтому асимптота-это старая координатная ось. Таким образом,

теорема 4 доказана. Ху = А Здесь afO соответствует равносторонней гиперболе и имеет осевые асимптоты координатных осей. Это первая гипербола、 Если 3-й, 2-й и 4-й координатные углы равны 0(рис.78 и 79).

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Приведение кривой второго порядка к каноническому виду

Пример №1 . Привести уравнение второго порядка к каноническому виду с помощью поворота и параллельного переноса осей координат. Построить кривую.

Пример №2 . Выполнив последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в исходной системе координат, а также найти параметры кривой.

Алгоритм перехода кривой второго порядка к каноническому виду

Пример №1 . 4y=-6-sqrt(4x-x 2 )
sqrt(4x-x 2 ) = -(4y+6)
Возведем в квадрат
4x-x 2 = (4y+6) 2
Раскрывая скобки, получаем:
16y 2 +48y + 36 +x 2 -4x = 0

Далее решается калькулятором. Если самостоятельно решать, то получим:
4x-x 2 = (4y+6) 2
-(x 2 — 4x) = 2(y+3/2) 2
-(x 2 — 4x + 4) = (y+3/2) 2
-(x — 2) 2 = (y+3/2) 2
(y+3/2) 2 + (x — 2) 2 = 0

Пример №2 . x=1-2/3 sqrt(y 2 -4y-5)
Здесь надо сначала привести к нормальному виду.
3/2(x-1)=sqrt(y 2 -4y-5)
Возводим в квадрат
9/4(x-1) 2 =y 2 -4y-5
9/4x 2 -9/4*2x+9/4-y 2 +4y+5=0
9/4x 2 -9/2x-y 2 +4y+29/4=0

Далее можно решать как с калькулятором, так и без него:
9/4(x-1) 2 =y 2 -4y-5
9/4(x-1) 2 =y 2 -4y+4-4-5
9/4(x-1) 2 =(y 2 -2)-9
9/4(x-1) 2 -(y 2 -2) = -9
-1/4(x-1) 2 +1/9(y 2 -2) = 1

Уравнение кривой второго порядка

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Диаметры кривой. Главные оси. Асимптоты. Уравнение кривой, отнесенной к сопряженным направлениям; уравнение кривой, отнесенной к асимптотам.

Если в кривой второго порядка провести все хорды одного и того же направления, то геометрическое место середин этих хорд представит некоторую прямую, которую называют диаметром, сопряженным данным хордам. Уравнение диаметра:

где есть угловой коэффициент сопряженных хорд. Меняя , т.е. меняя направление хорд, получим бесчисленное множество диаметров; все они проходят через центр кривой. У параболы все диаметры параллельны между собой.

Направление хорд и направление сопряженного им диаметра называются сопряженными направлениями относительно данной кривой. Зависимость между двумя сопряженными направлениями следующая:

Сопряженными диаметрами называются такие два диаметра, из которых каждый делит пополам хорды, параллельные другому. У параболы сопряженных диаметров нет, так как все диаметры имеют одно и тоже направление.

Главными осями кривой называются диаметры, перпендикулярные к сопряженным хордам; их направления называются главными направлениями.

В случае прямоугольной системы координат главные направления определяются из уравнения:

где – угол между одним из главных направлений и направлением оси .

В случае косоугольной системы координат имеем:

Всякая кривая второго порядка имеет два главных направления, за исключением окружности, для которой главные направления неопределенные.

Угловой коэффициент определяется для всех диаметров параболы по формуле:

если для старших коэффициентов параболы введены обозначения:

Главная ось параболы как один из ее диаметров имеет это же направление и в случае прямоугольных координат она изображается уравнением

Второе главное направление параболы перпендикулярно к ее диаметрам, но второй главной оси у параболы нет. Если отнести кривую у двум сопряженным направлениям, т.е. выбрать за оси координат прямые, имеющие сопряженные направления относительно этой кривой, то в уравнение кривой не войдет член с произведением координат (). У параболы кроме того, исчезнет ещё один из старших членов ().

Если центральную кривую отнести к двум сопряженным диаметрам (или к главным осям), то уравнение ее примет вид:

Простейшее уравнение параболы мы получим, поместив начало координат в вершину, т.е. в точку пересечения параболы с главной осью (), выбрав главную ось за ось абсцисс (, и ) и касательную в вершине (она перпендикулярна к оси) за ось ординат:

При таком же выборе осей координат центральная кривая изобразится уравнением

Асимптоты кривой можно рассматривать как те ее диаметры, которые сами себе сопряжены. Угловые коэффициенты асимптот определяются из уравнения

Асимптоты могут быть только у центральных кривых: гипербола имеет две действительные асимптоты, эллипс – две мнимые; в случае пересекающихся прямых асимптоты совпадают с этими прямыми.

Если принять асимптоты гиперболы за оси координат, то уравнение этой гиперболы примет вид:

587. Найти два сопряженных диаметра кривой , из которых один проходит через начало координат.

Решение . Данная кривая центральная, потому что . Уравнение всякого ее диаметра будет где — угловой коэффициент сопряженного диаметра. Так как искомый диаметр проходит через начало координат, то свободный член его уравнения должен равняться нулю, т.е. откуда . Вставив это значение параметра в общее уравнение диаметра и преобразовав его, получим: . Это уравнение одного из искомых диаметров; его угловой коэффициент ; следовательно, уравнение сопряженного диаметра будет:

588. Через точку (1;-2) проведен диаметр кривой . Найти уравнение этого диаметра и диаметра ему сопряженного.

589. Дана кривая . Найти ее диаметр, параллельный оси абсцисс, и диаметр, ему сопряженный.

590. Найти два сопряженных диаметра кривой , из которых один параллелен оси ординат.

591. Дана кривая и один из ее диаметров . Найти диаметр, ему сопряженный.

592. Составить уравнение диаметра кривой , параллельного прямой .

593. Определить диаметр кривой , образующий угол в с осью абсцисс. Угол .

594. Дана кривая: . Найти геометрическое место середин ее хорд: 1) параллельных оси ; 2) параллельных оси ; 3) параллельных прямой .

595. Найти диаметр кривой , проходжящей через середину хорды, отсекаемой этой кривой на прямой .

596. Найти середину хорды, отсекаемой кривой на прямой .

597. Найти такие сопряженные диаметры кривой , которые образуют между собой угол в . Угол .

598. Найти зависимость между угловыми коэффициентами прямых, имеющих сопряженные направления относительно:

1) эллипса ; 2) гиперболы .

599. Через точку (1;-3) провести хорду эллипса , сопряженную диаметру .

600. Найти направления и длину двух сопряженных диаметров эллипса , из которых один проходит через точку (2;3).

601. Найти угол между двумя сопряженными диаметрами эллипса , из которых один образует угол в с большой осью.

602. Определить длину тех сопряженных диаметров эллипса , которые образуют между собой угол .

Указание . В этой задаче удобно воспользоваться теоремами Аполлония: и , где и – полуоси эллипса; и — сопряженные полудиаметры его; – угол между этими сопряженными диаметрами.

603. Даны размеры двух сопряженных диаметров эллипса и и угол между ними . Вычислить длину его осей.

604. Определить угол между двумя сопряженными диаметрами гиперболы , зная, что действительный из этих диаметров втрое больше действительной оси.

605. Найти уравнения двух сопряженных диаметров гиперболы , угол между которыми равняется .

606. Дана парабола: . Написать уравнение диаметра этой параболы:

1) проходящего через начало координат;

2) сопряженного хордам, параллельным оси ;

3) сопряженного хордам, параллельным оси ;

4) образующего угол с сопряженными хордами;

5) перпендикулярного к сопряженным хордам.

Во всех случаях угол

607. Найти диаметр параболы , сопряженный тем хордам, которые наклонены под углом в к оси параболы.

608. Написать уравнение диаметра параболы , сопряженного с прямой .

609. Найти главные оси кривых:

Во всех случаях угол

610. Каковы будут главные оси распавшейся центральной кривой?

611. Найти ось параболы .

Решение . Все диаметры данной параболы имеют угловой коэффициент . Ось параболы есть диаметр, сопряженный перпендикулярным хордам, т.е. хордам с угловым коэффициентом (система координат предполагается прямоугольной). Уравнение всякого диаметра этой параболы будет при мы получим уравнение оси: .

612. Найти ось симметрии и вершину каждой из следующих парабол:

Во всех случаях угол

Указание . Вершина параболы находится как точка пересечение параболы с ее осью.

613. Найти общий диаметр двух кривых:

614. Составить уравнение кривой второго порядка, проходящей через начало координат, если известны две пары сопряженных ее диаметров:

Решение . Угловые коэффициенты сопряженных диаметров удовлетворяют уравнению: . Угловые коэффициенты данных диаметров: и , , ; вставляя эти значения в указанное уравнение, получим:

Координаты центра искомой кривой мы можем определить, решая совместно уравнения двух диаметров: , . Эти координаты должны удовлетворять уравнениям: и которые данном случае перепишутся так: и ; вставим вместо : и вычисленные их значения и тогда получим: и . Кроме того, кривая проходит через начало координат; значит, , и уравнение кривой будет:

615. Две пары прямых:

служат сопряженными диаметрами кривой второго порядка. Составить уравнение этой кривой, зная, что она проходит через точку (1;1).

616. Выяснить особенности в выборе осей координат, если кривые даны следующими уравнениями:

617. Относительно некоторой прямоугольной системы координат кривая дана уравнением: . Преобразовать это уравнение, приняв за оси координат главные оси кривой.

618. Отнести к главным осям кривые, данные относительно прямоугольной системы координат уравнениями:

619. Уравнение кривой, отнесенной к двум сопряженным диаметрам, составляющим угол , имеет вид: . Найти уравнение той же кривой относительно ее главных осей.

620. Отнести к главным осям кривые:

621. Выяснить особенности в выборе осей координат, если параболы даны следующими уравнениями:

622. привести к простейшему виду уравнение параболы ; .

623. Привести к простейшему виду уравнения следующих парабол:

624. Отнести к вершине следующие центральные кривые:

Во всех случаях .

625. Найти асимптоты следующих гипербол:

626. Доказать, что все кривые, уравнения которых отличаются друг от друга только свободными членами, имеют общие асимптоты. Найти, например, асимптоты кривых при различных значениях параметра λ.

627. Доказать, что если две кривые имеют общие асимптоты, то все члены их уравнений, кроме свободных членов, имеют пропорциональные коэффициенты.

628. Составить общее уравнение для всех кривых. Имеющих прямые и своими асимптотами.

629. кривая второго порядка проходит через точку (1;-1) и имеет своими асимптотами две прямые: и . Составить уравнение этой кривой.

630. Составить уравнение кривой, касающейся прямой и имеющей прямые и своими асимптотами.

630*. Какому условию удовлетворяют коэффициенты общего уравнения гиперболы, если гипербола равносторонняя?

631. Какой вид имеет уравнение гиперболы, если одна из осей координат или обе оси параллельны асимптотам?

632. Составить уравнение гиперболы, проходящей через точки (2;1), (-1;-2) и (), при условии, что одна из ее асимптот совпадает с осью абсцисс.

633. Уравнение гиперболы, отнесенной к главным осям, имеет вид: . Преобразовать это уравнение, приняв асимптоты гиперболы за новые оси координат.

634. Отнести гиперболу к ее асимптотам.

635. Как преобразуется уравнение гиперболы , если за оси координат принять ее асимптоты? Угол .

636. Сколько членов второй степени и какие именно могут войти в уравнение: 1) эллипса4 2) гиперболы; 3) параболы?

Преобразование уравнения кривой второго порядка с помощью инвариантов.

Если одна и та же кривая второго порядка, отнесенная к двум различным произвольно выбранным системам координат с координатными углами и , изображается уравнениями:

то имеют место следующие равенства:

т.е. существуют выражения, составленные из коэффициентов уравнения кривой и соответствующего координатного угла, которые не меняют своей величины ни при каком преобразовании декартовых координат. Такие выражения называются инвариантами кривой второго порядка. Мы можем пользоваться тремя вышеприведенными инвариантами:

для упрощения уравнений кривой второго порядка, если только уравнение кривой после преобразования содержит не более трех коэффициентов.

637. Пользуясь инвариантами, отнести к главным осям кривую , зная что .

Решение . Искомое уравнение имеет следующий вид:

Для прямоугольных систем координат инварианты упрощаются, так как и , и мы будем иметь: ; . Найдем числовое значение этих инвариантов, исходя из данного уравнения:

Составим теперь выражения этих же инвариантов через коэффициенты преобразованного уравнения: . Так как инварианты не меняют своей величины при преобразовании координат, то мы можем приравнять между собой найденные для них выражения, содержащие коэффициенты первоначального и преобразованного уравнения;. Из этой системы уравнений мы определяем неизвестные коэффициенты преобразованного уравнения: ;, и искомое уравнение будет . Таким образом, пользуясь инвариантами, можно привести уравнение кривой к простейшему виду, не отыскивая ее центра, осей и не составляя формул преобразования координат.

638. Пользуясь инвариантами, привести к простейшему виду уравнения следующих кривых:

при условии, что все они отнесены к прямоугольной системе координат.

639. Пользуясь инвариантами, упростить уравнения следующих кривых:

Во всех случаях .

640. Упростить уравнения следующих кривых:

640*. Отнести к главным осям кривую , если известно, что .

641. Отнести гиперболу к ее асимптотам, пользуясь инвариантами. Угол .

Решение . Уравнение кривой, отнесенной к асимптотам, имеет вид:

Нам надо найти два неизвестных коэффициента , и новый координатный угол , т.е. угол между асимптотами. Найдем числовую величину инвариантов, пользуясь данным уравнением, при , : . Выражения этих инвариантов в новых коэффициентах будут:

Для определения трех величин , и имеем три уравнения:

Решив их, получим: , ; и ; искомое уравнение будет: . Выбираем направление осей так, чтобы гипербола была расположена в нормальном угле и вертикальном к нему угле; тогда после упрощений получим: .

642. Отнести к асимптотам гиперболы, данные относительно прямоугольной системы координат уравнениями:

643. Относительно некоторой прямоугольной системы координат кривая изображается уравнением . Составить уравнение этой же кривой относительно ее вершины.

Указание . Отнести кривую к вершине – значит принять одну из осей кривой за ось абсцисс, перенести начало координат в вершину и принять касательную в вершине за ось ординат.


источники:

http://math.semestr.ru/line/curve.php

http://infourok.ru/uravnenie-krivoy-vtorogo-poryadka-2812642.html