Понятие логарифма и логарифмические уравнения

Логарифм — формулы, свойства и примеры с решением

Содержание:

Множеством (областью) значений показательной функции

Такое значение аргумента единственное, так как если и то по следствию из п. 2.3 верно равенство c = d. Это единственное значение аргумента с называют логарифмом числа b по основанию a и обозначают т. е.

Таким образом, равенство означает, что Сформулируем определение логарифма еще раз.

Определение:

Пусть Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести число а, чтобы получить число b.

Приведем несколько примеров:

  • а)
  • б)
  • в)
  • г)
  • д)не имеет смысла, так как значение выражения при любом значении х положительно и не может быть равно -9;
  • е) по определению логарифма не имеют смысла и такие выражения, как поскольку основанием логарифма должно быть положительное число, отличное от единицы.

Нахождение логарифма числа называется логарифмированием.

Обозначим Тогда, согласно определению логарифма, верно равенство т. е.

Это равенство называется основным логарифмическим тождеством.

Согласно этому тождеству, например, имеем: Основное логарифмическое тождество позволяет данное число b представить в виде степени с любым положительным основанием.

Например:

История логарифма

Логарифмы были изобретены в 1614 г. шотландским математиком Д. Непером (1550—1617) и независимо от него на 6 лет позднее швейцарским механиком и математиком И. Бюрги (1552—1632).

Оба исследователя хотели найти новое удобное средство арифметических вычислений, но их определения логарифма различны и у обоих не похожи на современные. Понимание логарифма как показателя степени с данным основанием впервые появилось в XVIII в. в работах английского математика В. Гардинера (1742). Широкому распространению этого определения логарифма более других содействовал Jl. Эйлер, который впервые применил в этой связи и термин «основание».

Термин «логарифм» принадлежит Неперу. Он возник из сочетания греческих слов логос — отношение и аритмос — число. Слово «логарифм», таким образом, означало «число отношения».

Пример:

а) Записать число в виде логарифмов по основанию

б) Записать число -5 в виде логарифмов по основанию и х

Решение:

а) По определению логарифма имеем:

б) По определению логарифма имеем:

Пример:

Между какими целыми числами находится число

Решение:

Пусть тогда верно равенство Поскольку По свойствам показательной функции с основанием 2 имеем Значит,находится между числами 4 и 5.

Ответ:

Пример:

Решение:

а) Поскольку то по определению логарифма имеем

б)

Ответ:

Логарифмы по основанию 10 имеют особое название — десятичные логарифмы. Десятичный логарифм числа b обозначается . Таким образом,

▲ Особое обозначение и название имеют не только десятичные логарифмы, но и логарифмы, основанием которых является число е:

Такие логарифмы называются натуральными.

Логарифмы по основанию е позволяют выражать математическую зависимость, которая характеризует многие биологические, химические, физические, социальные и другие процессы. По-видимому, этим объясняется и название «натуральные логарифмы», т. е. естественные (этот термин ввел в 1659 г. итальянский математик П. Менголи). Натуральные и десятичные логарифмы имели большое значение для облегчения вычислений в XVII—XX вв. до создания мощных современных вычислительных средств. Натуральные логарифмы имеют и большое теоретическое значение.▲

Основные свойства логарифмов

Теорема:

При любых положительных значениях b и с верно равенство:

Докажем утверждение (1).

По основному логарифмическому тождеству

по свойствам степени

Таким образом, имеем:

Отсюда по следствию из п. 2.3 получаем равенство (1).

Докажем утверждение (2). Преобразуем левую часть равенства (2):

I используя равенство (1), получим

Заметим, что равенство (2) можно доказать тем же способом, что и равенство (1), — сделайте это самостоятельно.

Равенство (1) означает, что логарифм произведения двух положительных чисел равен сумме логарифмов этих чисел.

Равенство (2) означает, что логарифм дроби с положительными. числителем и знаменателем равен разности логарифмов числителя и знаменателя.

Замечание. Равенства, доказанные в теореме 1 (как и другие равенства этого пункта), являются тождествами. Действительно, каждое из них превращается в верное числовое равенство при любых значениях a, b и с, для которых входящие в равенство выражения имеют смысл.

Теорема:

При любых значениях s и положительных значениях b верно равенство

По основному логарифмическому тождеству

по свойствам степени

Таким образом, имеем

Отсюда по следствию из п. 2.3 получаем равенство (3).

Следствие 1. Если числа одного знака, то имеет место равенство

Следствие 2. При любом целом имеет место равенство

Пример №1

Найти значение выражения:

Решение:

Ответ:

Теорема:

При любых значениях и верно равенство

Способ 1. По основному логарифмическому тождеству имеем

Прологарифмировав левую и правую части этого тождества по основанию а, получим

Применив тождество (3), имеем

Так как Поэтому левую и правую части этого равенства можно разделить на В результате получим тождество (6).

Способ 2. Пусть тогда Логарифмируя обе части этого равенства по основанию а, получаем

Итак,

Тождество (6) называется формулой перехода от логарифма по одному основанию к логарифму по другому основанию.

Обычно в таблицах, калькуляторах даются значения логарифмов по основанию 10, а когда нужно найти значение логарифма по другому основанию, пользуются формулой перехода от логарифма по одному основанию к логарифму по другому основанию.

Следствием из тождества (6) при основании а = с является формула

(убедитесь в этом самостоятельно).

Пример №2

Найти значение выражения, если

Решение:

согласно тождеству (6) имеем

используя тождество (3), получим

используя тождество (1), имеем

с учетом условия получим

6)

на основании тождеств (6) и (7) получим

по тождеству (3) и с учетом условия имеем

Ответ:

Следствие 3. Имеют место тождества:

Тождества (8) и (9) можно доказать, используя уже доказанные тождества из этого пункта.

Пример №3

Упростить выражение

Решение:

Используя определение логарифма, представим числа 1 и 3 в виде логарифмов по основанию 2:

по свойству (2) логарифмов имеем

воспользовавшись формулой (7), получим

Ответ:

Развитие науки, прежде всего астрономии, уже в XVI в. привело к необходимости громоздких вычислений при умножении и делении многозначных чисел. Эти вычислительные проблемы были в некоторой степени решены с открытием логарифмов и созданием таблиц логарифмов.

Логарифмическая функция

Рассмотрим выражение где х — переменная, а — постоянная, Это выражение имеет смысл при любом значении х > 0 и не имеет смысла при любом значении Таким образом, естественной областью определения выражения является множество всех положительных действительных чисел, т. е. промежуток

Определение:

Логарифмической функцией называется функция вида где а — постоянная,

Область определения логарифмической функции — это естественная область определения выражения т.е. множество

Графики некоторых логарифмических функций изображены на рисунке 34. Эти изображения (как и для графиков других функций) можно было получить, строя их по точкам. Отметим некоторые особенности изображенных графиков.

График функции расположен справа от оси Оу и пересекает ось Ох в точке (1; 0).

Когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» опускается вниз. А когда значения аргумента х увеличиваются, то график «медленно» поднимается вверх (ем. рис. 34). Аналогично для любой функции при а > 1 (рис. 35). График функции расположен справа от оси Оу и пересекает ось Ох в точке (1; 0) (см. рис. 34).

Заметим, что когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» поднимается вверх. А когда значения аргумента х увеличиваются, то график «медленно» опускается вниз. Аналогично для любой функции при 0 1 логарифмическая функция принимает отрицательные значения на интервале (0; 1) и принимает положительные значения на интервале И при 0 1 логарифмическая функция возрастает на всей области определения. При 0 1 график логарифмической функции лежит в IV координатном угле, когда и лежит в I координатном угле, когда При 0 1 логарифмическая функция возрастает на области определения, а на рисунке 36 видно, что при 0

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Логарифм, история логарифмов и логарифмические уравнения

Логарифмические уравнения и решение логарифмических уравнений входят в обязательный комплекс знаний и умений школьника, если он стремится сдать ЕГЭ по математике на высокий балл и поступить в ВУЗ, стать студентом. Рассмотрим, что же это такое — логарифм, логарифмические уравнения и как их решать.

Логарифм — что это

Логарифмом числа по основанию по основанию ( =c)называется такой показатель степени =c)называется такой показатель степени , в которую нужно возвести , чтобы получить , чтобы получить (то есть ). При этом задаются ограничения: 0, a\neq 1, b>0″ title=»Rendered by QuickLaTeX.com» height=»16″ width=»131″ style=»vertical-align: -4px;»/> ). При этом задаются ограничения: 0, a\neq 1, b>0″ title=»Rendered by QuickLaTeX.com»> . Значение логарифма может быть любым.

, , .

1. Действуем по определению. Подберем степень, в которую нужно возвести 3, чтобы получить 27.

.

2. При возведении , значит , значит .

Изобретенные в 17 веке для ускорения вычислений, логарифмы значительно сократили время, необходимое для умножения многозначных чисел. Они были основными в числовой работе более 300 лет, пока совершенство механических вычислительных машин в конце 19 века и компьютеров в 20 веке не сделали их устаревшими для крупномасштабных вычислений. Однако натуральный логарифм (с основанием e ≅ 2.71828 и записываемый как ln n) продолжает оставаться одной из наиболее полезных функций в математике с приложениями к математическим моделям в физических и биологических науках.

Логарифмическая функция и ее график

Помня об ограничениях, построим по точкам графики логарифмической функция в разных случаях.

Пусть . Подставим вместо . Подставим вместо разные числа и определим соответствующие значения переменной.

124
-1012

Отметим координаты точек на плоскости и соединим их плавной линией.

Логарифмическая функция все время возрастает.

Такое поведение характерно для всех логарифмических функций с основанием больше единицы.

Пусть теперь . Составим таблицу значений для этого случая.

124
10-1-2

Получим следующий график функции:

Все логарифмические функции с основанием от 0 до 1 убывают на всей области определения.

Графики всех логарифмических функций проходят через точку с координатами (1;0).

Особыми знаками принято обозначать логарифмы с основанием десять и логарифмы с натуральным основанием и логарифмы с натуральным основанием .

Свойства логарифмов

Для упрощения вычислений при работе с логарифмами полезно знать и уметь использовать основные свойства.

Логарифмы были быстро приняты учеными из-за различных полезных свойств, которые упростили долгие, утомительные вычисления.

В частности, ученые могли найти произведение двух чисел m и n, посмотрев логарифм каждого числа в специальной таблице, сложив логарифмы, а затем снова сверившись с таблицей, чтобы найти число с этим вычисленным логарифмом (известным как его антилогарифм). Выраженная в терминах обычных логарифмов, эта связь определяется как log m n = log m + log n.

Например, 100 × 1000 можно рассчитать, просмотрев логарифмы 100 по основанию 10 и 1000 и 1000 . Сложив логарифмы , а затем найдя его антилогарифм (то есть число, стоящее под знаком логарифма, в данном случае 100000) в таблице.

Аналогично, задачи деления преобразуются в задачи вычитания с логарифмами: log m/n = log m — log n.

Это еще не все. Расчет степеней и корней может быть упрощен с использованием логарифмов. Логарифмы также могут быть преобразованы между любыми положительными основаниями (за исключением того, что 1 не может использоваться в качестве основания, поскольку все его степени равны 1).

В логарифмические таблицы обычно включались только логарифмы для чисел от 0 до 10. Чтобы получить логарифм некоторого числа вне этого диапазона, число было сначала записано в удобном виде как произведение его значащих цифр и его степени по основанию 10 —

например, 358 будет записано как 3,58 × 10 2 ,

а 0,0046 будет записано как 4,6 × 10 -3 .

Тогда логарифм значащих цифр — десятичная дробь между 0 и 1, известная как мантисса — будет найдена в таблице. Например, чтобы найти логарифм 358, можно посмотреть таблицу значений логарифмов 3,58 ≅ 0,55388. Следовательно, lg 358 = lg 3,58 + lg 100 = 0,55388 + 2 = 2,55388.

В примере числа с отрицательным показателем степени, такого как 0,0046, можно посмотреть lg 4,6 ≅ 0,66276. Следовательно, lg 0,0046 = lg 4,6 + lg 0,001 = 0,66276 — 3 = -2,33724.

История логарифмов

Изобретению логарифмов предшествовало сравнение арифметических и геометрических последовательностей.

В геометрической последовательности каждый член образует постоянное соотношение (знаменатель прогрессии) с предыдущим и последующим членами прогрессии: например,… 1/1000, 1/100, 1/10, 1, 10, 100, 1000… имеет общее отношение 10. В арифметической последовательности каждый последующий член отличается на константу, известную как разность прогрессии, например,… −3, −2, −1, 0, 1, 2, 3… имеет разность 1.

Обратите внимание, что геометрическая последовательность может быть записана в терминах ее общего отношения, для приведенной выше примерной геометрической последовательности:… 10 −3 , 10 −2 , 10 −1 , 10 0, 10 1 , 10 2 , 10 3 ….

Умножение двух чисел в геометрической последовательности, скажем, 1/10 и 100, равно суммированию соответствующих показателей степеней с основанием 10: -1 и 2, чтобы получить 10 1 = 10. Таким образом, умножение преобразуется в сложение.

Однако первоначальное сравнение между двумя возможностями вычислений произведения не было основано на каком-либо явном использовании экспоненциальной записи: это было последующее развитие.

В 1620 году в Праге швейцарским математиком Йостом Бурги была опубликована первая таблица, основанная на концепции соотношения геометрических и арифметических последовательностей.

Шотландский математик Джон Непер опубликовал свое открытие логарифмов в 1614 году. Его целью было помочь в умножении величин, которые были связаны с вычислением синуса в прямоугольном треугольнике.

Вычисления Непера и Бригса

В сотрудничестве с английским математиком Генри Бригсом Непер приспособил свой логарифм к его современной форме. Для неперова логарифма сравнение будет происходить между точками, движущимися по градуированной прямой линии, точка L (для логарифма) движется равномерно от минус бесконечности до плюс бесконечности, точка Х (для синуса) движется от нуля до бесконечности со скоростью пропорционально его расстоянию от нуля. Кроме того, L равно нулю, когда X равно единице, и их скорость в этой точке равна.

Суть открытия Непера состоит в том, что он связал между собой арифметические и геометрические прогрессии — то есть умножение и возведение в степень значений точки X соответствуют сложению и умножению значений точки L соответственно. На практике удобно ограничивать движение L и X требованием, чтобы L = 1 при X = 10, в дополнение к условию, что X = 1 при L = 0. Это изменение привело к бригиану, или общему логарифму.

Непер умер в 1617 году, а Бригс продолжил расчеты в одиночку, опубликовав в 1624 году таблицу логарифмов, рассчитанную до 14 знаков после запятой для чисел от 1 до 20 000 и от 90 000 до 100 000. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — логарифмические линейки были незаменимы в инженерных расчетах.

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Где используются логарифмы

Некоторые области науки, где применяются логарифмы:

  • Децибелы, используемые для измерения звукового давления, определяются с помощью логарифмов.
  • Шкала Рихтера, которая используется для измерения интенсивности землетрясений, определяется с помощью логарифмов
  • Значения pH в химии, которое используется для определения уровня кислотности вещества, также определяется с использованием понятия логарифма.
  • Когда две измеренные величины оказываются связанными степенной функцией, параметры функции могут быть оценены с использованием логарифмов.
  • Логарифмы могут быть использованы для решения уравнений, таких как 2 х = 3.

Решение логарифмических уравнений

Рассмотрим простейшие логарифмические уравнения и примеры их решения.

Задание 1

Решите уравнение log5(x 2 +x)=log5(x 2 +9)

Ответ:9

Решение: Так как основания логарифмов одинаковы, то числа, стоящие под знаком логарифмов — одинаковы:

,

Задание 2

Решите уравнение logx-5 49 = 2.

Если уравнение с логарифмами имеет более одного корня, в ответе укажите наибольший из них.

Ответ: 12

Решение:

x 2 – 10 x + 25 = 49;

x 2 – 10 x – 24 = 0;

a = 1 , b = -10, c = -24;

При х = –2 основание логарифма отрицательно (известно, что основание должно быть положительным). Решением является корень 12. Сделайте проверку.

Задание 3

Найдите корень уравнения log2(4 – x) = 7.

Ответ:-124

Решение:

Задание 4

Найдите корень уравнения .

Ответ: 115

Решение: 27=3 3 , тогда

или или или уравнения с логарифмами. По основному свойству логарифмов: при возведении числа в степень логарифма с таким же основанием, остается число, стоящее под знаком логарифма, то есть: . Тогда получим: . Тогда получим: .

Решая данное уравнение, получим: ,

.

Задание 5

Решите уравнение logx+725 = 2. Если уравнение имеет более одного корня, в ответе укажите наименьший из них.

Ответ: -2

Решение: .

0″ title=»Rendered by QuickLaTeX.com» height=»15″ width=»68″ style=»vertical-align: -2px;»/>, -7″ title=»Rendered by QuickLaTeX.com» height=»13″ width=»54″ style=»vertical-align: 0px;»/> , -7″ title=»Rendered by QuickLaTeX.com»> .

и и

и и

Так как x должен быть больше -7, то корень не подходит. И остается один единственный корень: не подходит. И остается один единственный корень: .

Таким образом, уже не важно — наибольший это корень или наименьший, он один подходит. Поэтому в ответе указываем его.

Задание 6

Решите уравнение log2(2 – x) = log2(2 – 3x) + 1

Ответ: x=0,4.

Решение: мы знаем, что , тогда пусть в нашем случае , тогда пусть в нашем случае : ,

применяя свойство сложения двух логарифмов с одинаковыми основаниями, получим:

.

Задание 7

Решите уравнение log5(7 – x) = log5(3 – x) + 1

Ответ: 2

Решение: мы знаем, что , тогда пусть в нашем случае , тогда пусть в нашем случае : .

применяя свойство сложения двух логарифмов с одинаковыми основаниями, получим:

.

Задание 8

Найдите корень уравнения

Ответ: x=-1

Решение:

.

так как у нас должно выполняться условие:

0\\ 4+x>0 \end \right.» title=»Rendered by QuickLaTeX.com» height=»41″ width=»87″ style=»vertical-align: -16px;»/>, откуда , откуда , таким образом нам подходит только один корень .

Итак, мы рассмотрели решение логарифмических уравнений с подробным решением каждого из них. Вы узнали, что такое логарифм, историю возникновения логарифма и имена ученых, которые схватили идею расчета произведения через сложение и изобрели логарифм, который на многие годы облегчил расчеты инженеров, строителей, ученых.

Формула корней квадратного уравнения

Таблица кубов натуральных чисел от 1 до 100

Как разложить на множители квадратный трехчлен

Сочинение на тему: Роман «История одного города» М.Е. Салтыкова-Щедрина — история России в зеркале сатиры

Логарифмические уравнения

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

При этом 0,\;a> 0,\;a\neq 1′ alt=’b> 0,\;a> 0,\;a\neq 1′ />.

Обратим внимание на область допустимых значений логарифма:

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)

Формула перехода к новому основанию:

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при 0,\;a> 0,\;a\neq 1′ alt=’b> 0,\;a> 0,\;a\neq 1′ />.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение:

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.

3. Решите уравнение:

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

4. Решите уравнение:

Область допустимых значений: 0.’ alt=’4+x> 0.’ /> Значит, -4.’ alt=’x> -4.’ />

Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом -4′ alt=’x> -4′ />.

5. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

0\\ x^<2>-4> 0\\ x^<2>+x=x^<2>-4 \end\right.\Leftrightarrow \left\ <\beginx^<2>+x> 0\\ x^<2>-4> 0\\ x=-4 \end\right.\Leftrightarrow x=-4′ alt=’\log _<8>\left ( x^<2>+x \right )=\log _<8>\left ( x^<2>-4 \right )\Leftrightarrow \left\ <\beginx^<2>+x> 0\\ x^<2>-4> 0\\ x^<2>+x=x^<2>-4 \end\right.\Leftrightarrow \left\ <\beginx^<2>+x> 0\\ x^<2>-4> 0\\ x=-4 \end\right.\Leftrightarrow x=-4′ />
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Запишем решение как цепочку равносильных переходов.

0 \end\right.\Leftrightarrow \left\ <\begin\left (2^<\log _<2>\left ( 4x+5 \right )> \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\left ( 4x+5 \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\sqrt<4x+5>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin4x+5=81\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\beginx=19\\ x> -1\frac<1> <4>\end\right.’ alt=’2^<\log _<4>\left ( 4x+5 \right )>=9\Leftrightarrow \left\ <\begin2^\frac<<\log _<2>\left ( 4x+5 \right )>><2>=9\\ 4x+5> 0 \end\right.\Leftrightarrow \left\ <\begin\left (2^<\log _<2>\left ( 4x+5 \right )> \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\left ( 4x+5 \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\sqrt<4x+5>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin4x+5=81\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\beginx=19\\ x> -1\frac<1> <4>\end\right.’ />

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
0\\ x> 0\\ x\neq 1 \end\right.’ alt=’\left\ <\begin12-x> 0\\ x> 0\\ x\neq 1 \end\right.’ />

Теперь можно «убрать» логарифмы.

— посторонний корень, поскольку должно выполняться условие 0′ alt=’x> 0′ />.

8. Решите уравнение .

ОДЗ уравнения: 0′ alt=’x> 0′ />

Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

Вернемся к переменной х:

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену

Вернемся к переменной х. Получим:

. Мы нашли все корни исходного уравнения.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.


источники:

http://novstudent.ru/logarifmicheskie-uravneniya/

http://ege-study.ru/logarifmicheskie-uravneniya/