Понятия о натуральных числах уравнение

Натуральные числа

О чем эта статья:

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Особенности натуральных чисел
  • Наименьшее натуральное число: единица (1).
  • Наибольшее натуральное число: не существует. Натуральный ряд бесконечен.
  • У натурального ряда каждое следующее число больше предыдущего на единицу: 1, 2, 3, 4, 5, 6, 7 и т. д.
  • Множество всех натуральных чисел принято обозначать латинской буквой N.

Какие операции возможны над натуральными числами

  • сложение:
    слагаемое + слагаемое = сумма;
  • умножение:
    множитель × множитель = произведение;
  • вычитание:
    уменьшаемое − вычитаемое = разность.

При этом уменьшаемое должно быть больше вычитаемого, иначе в результате получится отрицательное число или ноль;

  • деление:
    делимое : делитель = частное;
  • деление с остатком:
    делимое / делитель = частное (остаток);
  • возведение в степень:
    a b , где a — основание степени, b — показатель степени.
  • Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

    Десятичная запись натурального числа

    В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

    Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

    Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

    077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

    Количественный смысл натуральных чисел

    Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

    Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

    Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

    Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

    🍌🍌🍌3 предмета («три»)
    🍌🍌🍌🍌4 предмета («четыре»)
    🍌🍌🍌🍌🍌5 предметов («пять»)
    🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
    🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
    🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
    🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

    Основная функция натурального числа — указать количество предметов.

    Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

    Однозначные, двузначные и трехзначные натуральные числа

    Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

    Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

    Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

    По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

    Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

    Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

    Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

    Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

    Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

    Многозначные натуральные числа

    Многозначные натуральные числа состоят из двух и более знаков.

    1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

    Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

    Сколько всего натуральных чисел?

    Однозначных 9, двузначных 90, трехзначных 900 и т.д.

    Свойства натуральных чисел

    Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

    множество натуральных чиселбесконечно и начинается с единицы (1)
    за каждым натуральным числом следует другоеоно больше предыдущего на 1
    результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
    результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
    переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
    сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
    переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
    сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
    распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
    распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
    распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
    распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

    Разряды натурального числа и значение разряда

    Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

    Разряд — это позиция, место расположения цифры в записи натурального числа.

    У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

    Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

    Низший (младший) разряд многозначного натурального числа — разряд единиц.

    Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

    Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

    Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

    Десятичная система счисления

    Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

    Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

    В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

    Вопрос для самопроверки

    Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

    Уравнение и его корни: определения, примеры

    После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

    Понятие уравнения

    Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

    Уравнением называется равенство с неизвестным числом, которое нужно найти.

    Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

    Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .

    После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .

    Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

    В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

    Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

    То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

    В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

    Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

    К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .

    Корень уравнения

    Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

    Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

    Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

    Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

    Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

    Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

    Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

    Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

    Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

    Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

    Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня — 2 , 1 и 5 , то пишем — 2 , 1 , 5 или < - 2 , 1 , 5 >.

    Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

    Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

    Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

    Поясним определение на примерах.

    Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

    Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .

    На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

    Числа: натуральные, целые, рациональные, иррациональные, действительные

    Натуральные числа

    Натуральные числа определение – это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

    Это натуральный ряд чисел.
    Ноль натуральное число? Нет, ноль не является натуральным числом.
    Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
    Каково наименьшее натуральное число? Единица — это наименьшее натуральное число.
    Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

    Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

    с — это всегда натуральное число.

    Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

    с — это всегда натуральное число.

    Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе — нет.

    Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

    где с — натуральное число, то это значит, что a делится на b нацело. В этом примере a — делимое, b — делитель, c — частное.

    Делитель натурального числа — это натуральное число, на которое первое число делится нацело.

    Каждое натуральное число делится на единицу и на себя.

    Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

    Единицу не считают простым числом.

    Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

    Единицу не считают составным числом.

    Множество натуральных чисел составляют единица, простые числа и составные числа.

    Множество натуральных чисел обозначается латинской буквой N.

    Свойства сложения и умножения натуральных чисел:

    переместительное свойство сложения

    сочетательное свойство сложения

    переместительное свойство умножения

    сочетательное свойство умножения

    распределительное свойство умножения

    Целые числа

    Целые числа — это натуральные числа, ноль и числа, противоположные натуральным.

    Числа, противоположные натуральным — это целые отрицательные числа, например:

    Множество целых чисел обозначается латинской буквой Z.

    Рациональные числа

    Рациональные числа — это целые числа и дроби.

    Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

    Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

    Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера:

    Другой пример: рациональное число 9 может быть представлено в виде простой дроби как 18/2 или как 36/4.

    Ещё пример: рациональное число -9 может быть представлено в виде простой дроби как -18/2 или как -72/8.

    Множество рациональных чисел обозначается латинской буквой Q.

    Подробнее о рациональных числах в разделе Рациональные числа.

    Иррациональные числа

    Иррациональные числа — это бесконечные непериодические десятичные дроби. Примеры:

    Подробнее об иррациональных числах в разделе Иррациональные числа.

    Действительные числа

    Действительные числа – это все рациональные и все иррациональные числа.

    Множество действительных чисел обозначается латинской буквой R.


    источники:

    http://zaochnik.com/spravochnik/matematika/systems/uravnenie-i-ego-korni/

    http://sbp-program.ru/shkolnaya-algebra/chisla.htm