Порядком реакции порядком кинетического уравнения называется

Д.Г.НАРЫШКИН

КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

Возможности компьютерной математики

при исследовании поведения химических систем во времени

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТТУ)

ВВЕДЕНИЕ 3

1. ОБЩИЕ ЗАКОНОМЕРНОСТИ ХИМИЧЕСКОЙ КИНЕТИКИ

1.1. Скорость реакции

1.2. Влияние концентрации на скорость реакции

1.3. Молекулярность и порядок реакции

1.4. Прямая и обратная задача химической кинетики

1.5. Реакция первого порядка

1.6. Реакции второго порядка

1.7. Реакции других порядков

1.8. Методы определения порядка реакции

2. Сложные реакции

2.1. Кинетика обратимых реакций

2.2 Параллельные реакции

2.3 Последовательные реакции

2.4 Метод квазистационарных концентраций

3. ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

3.1.Уравнение Аррениуса

3.2. Связь энергии активации с тепловым эффектом реакции

3.3. Связь между скоростью реакции и равновесием

4. КИНЕТИКА ГЕТЕРОГЕННЫХ РЕАКЦИЙ

4.1. Общие понятия

4.2. Макрокинетика. Внешнедиффузионная область

4.3. Макрокинетика. Внутридиффузионное торможение

5. КИНЕТИКА РЕАКЦИЙ В ОТКРЫТЫХ СИСТЕМА

5.1. Химические реакторы.

5.2. Реакторы идеального смешения.

5.3. Реакторы идеального вытеснения.

5.4. Обратимые химические реакции в реакторах

в реакторах смешения и вытеснения.

7. Заключение

8. Рекомендуемая литература

ВВЕДЕНИЕ

Термодинамический метод изучения химических реакций позволяет сделать вывод о принципиальной возможности исследуемого процесса в тех или иных условиях и о глубине его протекания.

При постоянстве давления и температуры самопроизвольное протекание процесса возможно только в направлении уменьшения энергии Гиббса.

Условие определяет принципиальную возможность проведения процесса в заданных условиях из начального состояния в конечное, но не позволяет оценить скорость такого перехода.

Это обстоятельство связано с тем, что реакции не зависит от пути (механизма) процесса, а определяется только начальным и конечным состоянием системы.

Однако химические реакции могут протекать с самыми различными скоростями – от взрывных до очень медленных, протекающих в течение многих месяцев и лет. Даже одна и та же реакция, протекающая на различных катализаторах, может иметь скорости, различающиеся во много раз.

В некоторых случаях необходимо увеличить скорость реакции, в других наоборот, уменьшить. Таких примеров можно привести множество.

Поэтому изучение скорости протекания химических процессов (а это и составляет задачу кинетики) чрезвычайно важно.

Для рационального проведения химических реакций необходимо уметь управлять ими, знать зависимости скорости от различных параметров.

По кинетике издано очень много учебной и методической литературы. Но все эти книги и учебные пособия написаны так, что хочется спросить: «Какое, милые, тысячелетье на дворе?»

Современные системы компьютерной математики позволяют дать быстрый, и что, пожалуй, главное, наглядный прогноз относительно поведения химической системы во времени.

Однако в русскоязычной учебной литературе по кинетике химических реакций подход, в котором используются средства символьной математики в совокупности со средствами решения систем дифференциальных уравнений, представляемые математическим пакетом Mathcad , практически отсутствует.

Поэтому, отвечая на естественный вопрос – чем предлагаемое учебное пособие отличается от множества других, можно ответить: настоящее пособие имеет цель продемонстрировать эффективность применения математического пакета Mathcad для решения задач химической кинетики.

Специальные химические дисциплины, такие как термодинамика и кинетика, достаточно математизированы, и часто решение химической задачи вызывает у студентов значительные трудности, связанные с математикой – довольно часто это приводит к тому, что приходится сознательно упрощать задачу.

Пособие иллюстрирует богатейшие возможности, которые открывает применение компьютерной математики перед исследователем для анализа поведения химических систем во времени.

В этом отношении математические пакеты становятся практически незаменимыми элементами обучения, позволяющими сделать акцент на содержательном анализе полученных результатов.

Знаком >>>>>> в тексте пособия отмечен переход к Mathcad документу для интерактивного расчета.

1. ОБЩИЕ ЗАКОНОМЕРНОСТИ ХИМИЧЕСКОЙ КИНЕТИКИ

1.1. Скорость реакции

Х имическая кинетика – наука о скоростях и закономерно-стях протекания химических процессов во времени.

Химическая кинетика изучает механизм протекания процесса, т.е. те промежуточные стадии, состоящие из элементарных актов, через которые система переходит из начального состояния в конечное.

Химическая кинетика изучает скорости этих стадий и факторы, влияющие на их скорость.

Уравнение химической реакции показывает начальное состояние системы (исходные вещества) и её конечное состояние (продукты реакции), но не отражает механизма процесса. Однако путь перехода системы из начального в конечное состояние может быть достаточно сложным и «извилистым».
Так, например, реакция

протекает по следующему механизму:

Изучить кинетику реакции – значит показать, как реально протекает исследуемая реакция, её механизм, получить зависимость, связывающую скорость реакции с факторами, влияющими на неё.

Различают два типа химических реакций: гомогенные и гетерогенные.

К гомогенным относят реакции, у которых и исходные вещества и продукты реакции находятся в одной фазе. Взаимодействие веществ в таких реакциях происходит по всему объёму.

К гетерогенным реакциям относят реакции, протекающие на границе раздела фаз.

Пусть протекает реакция

(1.1)

где a 1 , a 2 , ai , b 1 , b 2 , bj – стехиометрические коэффициенты.

Скорость реакции по i –му веществу в гомогенной системе определяется как количество i -го вещества, образующееся (или реагирующее) в единице реакционного объёма в единицу времени:

(1.2)

где V – объём реакционной зоны, Ni – количество i –го вещества.

Если реакция протекает изохорически, т.е. объём во время реакции не меняется, то, поскольку концентрация и объём связаны соотношением

,

скорость реакции можно определить как изменение концентрации вещества во времени

Ранее мы определили скорость химической реакции как изменение числа молей реагирующих веществ в единицу времени в единице объема, т. е.

где — изменение числа молей одного из исходных веществ за время .

Таким образом определяется средняя скорость реакции для заданного интервала времени.

Если объем в процессе реакции постоянен, то

где — изменение концентрации.

или

(скорость всегда положительна, а может быть больше или меньше нуля в зависимости от того, изменение концентрации исходного вещества или продукта реакции мы рассматриваем).

Если интервал времени , то мы получим истинную скорость реакции r в данный момент времени, т. е.

(1.3)

Размерность скорости: моль/(л·с).

Не только знак, но и абсолютное значение скорости зависит от того, по какому из участников реакции она измерена.

Так, например, при протекании реакции

скорость, с которой уменьшается концентрация водорода во время процесса, в три раза больше скорости убывания концентрации азота и в полтора раза выше скорости возрастания концентрации аммиака.

Следовательно, для реакции

скорости по компонентам реакции будут связаны соотношением:

Экспериментально установлено, что скорость реакции зависит от природы реагирующих веществ, их концентрации (или давления), температуры, т.е.

Раскрытие этой зависимости и составляет одну из задач кинетики.

1.2. Влияние концентрации на скорость реакции

Подход к выяснению зависимости скорости реакции от концентрации реагирующих веществ можно иллюстрировать следующим положением теории вероятностей: вероятность одновременного осуществления независимых событий равна произведению вероятностей каждого из них.

Для того чтобы произошло химическое взаимодействие, например, реакция

необходимо, но не достаточно, столкновение реагирующих молекул А и В, т.е. одновременное нахождение их в определённой точке реакционного пространства.

Вероятность ω нахождения молекулы для каждого из веществ прямо пропорциональна количеству молекул в единице объёма, т.е. его концентрации:

, .

Тогда вероятность того, что обе молекулы будут одновременно находиться в одной точке пространства, т.е. что они столкнутся, равна

Но не все столкновения приведут к реакции, а лишь их некоторая доля α , величина которой зависит от температуры и природы веществ, поэтому скорость реакции

Постоянную k , не зависящую от концентрации и зави­ сящую только от температуры и природы реагирующих веществ, называют константой скорости реакции.

Численное значе­ ние k выражает скорость реакции, когда концентрации реагирующих веществ равны 1 моль/л.

Пусть протекает химическая реакция:

aA + bB + … → продукты.

Тогда зависимость скорости реакции от концентрации можно выразить соотношением

(1.4)

Полученное выражение называют законом действия масс.

1.3. Молекулярность и порядок реакции

Число молекул, вступающих в реакцию, определяют молекулярность реакции.

Так, если в реакцию вступает одна молекула, то такая реакция называется молекулярной реакцией. Если в реакции участвуют две молекулы (безразлично, одинаковые или нет), то такая реакция называется бимолекулярной. Встречаются также тримолекулярные реакции.

Реакции более высокой степени молекулярности крайне редки из–за малой вероятности одновременного столкновения большого числа молекул.

Поэтому большинство реакций протекают в несколько элементарных, простых стадий, в которых участвует небольшое число молекул.

Так, например, рассмотренная выше реакция

протекает по следующему механизму:

вторая стадия (медленная)

Определить такие стадии – значит определить механизм, или путь реакции.

Скорость всей реакции определяется скоростью её наиболее медленной стадии, которая и определяет механизм.

Поэтому закон действующих масс справедлив только для таких элементарных стадий.

Молекулярность реакции легко определить в случае простых реакций, протекающих в одну стадию. В большинстве же случаев довольно трудно найти молекулярность реакции.

Поэтому вводится понятие порядка реакции, который можно найти из кинетических уравнений, полученных экспериментально.

Порядок реакции по данному веществу равен степени, в которой концентрация данного вещества входит в уравнение скорости реакции.

Сумма показателей степеней, в которых концентрация всех исходных веществ входит уравнение скорости реакции, равна порядку реакции в целом. Порядок химической реакции по веществу совпадает со стехиометрическим коэффициентом реакции лишь в очень простых реакциях, например в реакции синтеза йодистого водорода:

Порядок этой реакции по водороду (первый) и йоду (первый) равны стехиометрическими коэффициентами, а общий порядок реакции (второй) равен сумме стехиометрических коэффициентов в уравнении скорости реакции

В подавляющем большинстве случаев порядок реакции по веществу отличается от стехиометрических коэффициентов уравнения реакции для этого вещества.

Соответственно общий порядок реакции обычно не равен сумме стехиометрических коэффициентов уравнения реакции.

при температурах, меньших 298К, протекает по следующему механизму:

первая стадия процесса: NO 2 + NO 2 ® NO 3 + NO

вторая стадия процесса: NO 3 + CO ® CO 2 + NO 2,

причем лимитирующей, т.е. скорость определяющей стадией является первая стадия процесса:

Тогда, согласно первому постулату химической кинетики, который утверждает, что скорость всей реакции равна скорости его самой медленной стадии, можно записать:

,

где— скорость первой стадии процесса.

Согласно второму постулату химической кинетики, который утверждает, что скорость элементарной (одностадийной) реакции пропорциональна концентрации реагирующих веществ в степенях, равных стехиометрическим коэффициентам, получим зависимость скорости реакции

от концентрации реагирующих веществ:

Обратите внимание, что скорость реакции

не зависит от концентрации оксида углерода CO .

Уравнение, выражающее зависимость скорости реакции от концентрации каждого вещества, называют кинетическим уравнением реакции в дифференциальной форме.

К сожалению, кинетическое уравнение реакции может быть получено только при её экспериментальном изучении и не может быть выведено из стехиометрического уравнения.

1.4. Прямая и обратная задача химической кинетики

Определение на основании экспериментальных данных о зависимости концентраций от времени проведения процесса параметров кинетического уравнения – порядка реакции и значения константы скорости – составляет так называемую обратную задачу химической кинетики.

Знание кинетического уравнения реакции в дифференциальной форме позволяет определить время достижения некоторой заданной концентрации реагирующего вещества (или продукта реакции).

Пусть, например, протекает реакция

aA + bB + … → продукты,

кинетическое уравнение которой:

Тогда время достижения некоторой концентрации вещества А можно определить, интегрируя кинетическое уравнение реакции в дифференциальной форме:

Решая дифференциальное уравнение

можно получить зависимость концентрации реагирующего вещества (или продукта реакции) от времени проведения процесса – так называемых кинетических кривых.

Определение – на основании феноменологической модели процесса – концентраций реагентов от времени проведения реакции составляет прямую задачу химической кинетики.

Отметим сразу, что аналитически не всегда удаётся решить дифференциальное уравнение, особенно в случае сложной кинетики.

В этом случае прибегают к численным методам решения и использование компьютерной математики. В частности, применение математических пакетов, например, таких, как Mathcad , становится незаменимым инструментом в исследовательской практике и в процессе обучения.

1.5. Реакция первого порядка

Реакция первого порядка может быть записана в общем виде:

Примером такой реакции может служить реакция разложения диметилового эфира:

Кинетическое уравнение реакции первого порядка можно представить дифференциальным уравнением

(1.5)

Тогда время t достижения некоторой концентрации диметилового эфира CH 3 OCH 3 можно определить, интегрируя соотношение (1.5):

,

где С и C 0 – концентрация CH 3 OCH 3 в момент времени t и t =0.

Интегрирование приводит к выражению

(1.6) И тогда зависимость концентрации исходного вещества CH 3 OCH 3 от времени проведения процесса:

. (1.7)

Из (1.7) следует, что концентрация исходного вещества со временем изменяется по экспоненциальному закону:

Проиллюстрируем изменение концентрации в зависимости от времени на примере реакции первого порядка

с начальной концентрацией моль/л и константой скорости при некоторой температуре k=0.05 1/c

Рис.1. Зависимость концентрации

от времени в реакции первого порядка .

и, в логарифмических координатах, согласно зависимости

Порядком реакции порядком кинетического уравнения называется

1. Основные понятия и постулаты химической кинетики

Химическая кинетика — раздел физической химии, изучающий скорости химических реакций. Основные задачи химической кинетики: 1) расчет скоростей реакций и определение кинетических кривых, т.е. зависимости концентраций реагирующих веществ от времени (прямая задача); 2) определение механизмов реакций по кинетическим кривым (обратная задача).

Скорость химической реакции описывает изменение концентраций реагирующих веществ в единицу времени. Для реакции

aA + bB + . dD + eE + .

скорость реакции определяется следующим образом:

,

где квадратные скобки обозначают концентрацию вещества (обычно измеряется в моль/л), t — время; a, b, d, e — стехиометрические коэффициенты в уравнении реакции.

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры и наличия катализатора. Зависимость скорости реакции от концентрации описывается основным постулатом химической кинетики — законом действующих масс:

Скорость химической реакции в каждый момент времени пропорциональна текущим концентрациям реагирующих веществ, возведенным в некоторые степени:

,

где k — константа скорости (не зависящая от концентрации); x, y — некоторые числа, которые называют порядком реакции по веществам A и B, соответственно. Эти числа в общем случае никак не связаны с коэффициентами a и b в уравнении реакции. Сумма показателей степеней x + y называется общим порядком реакции. Порядок реакции может быть положительным или отрицательным, целым или дробным.

Большинство химических реакций состоит из нескольких стадий, называемых элементарными реакциями. Под элементарной реакцией обычно понимают единичный акт образования или разрыва химической связи, протекающий через образование переходного комплекса. Число частиц, участвующих в элементарной реакции, называют молекулярностью реакции. Элементарные реакции бывают только трех типов: мономолекулярные (A B + . ), бимолекулярные (A + B D + . ) и тримолекулярные (2A + B D + . ). Для элементарных реакций общий порядок равен молекулярности, а порядки по веществам равны коэффициентам в уравнении реакции.

ПРИМЕРЫ

Пример 1-1. Скорость образования NO в реакции 2NOBr(г) 2NO(г) + Br2(г) равна 1.6 . 10 -4 моль/(л . с). Чему равна скорость реакции и скорость расходования NOBr?

Решение. По определению, скорость реакции равна:

моль/(л . с).

Из этого же определения следует, что скорость расходования NOBr равна скорости образования NO с обратным знаком:

моль/(л . с).

Пример 1-2. В реакции 2-го порядка A + B D начальные концентрации веществ A и B равны, соответственно, 2.0 моль/л и 3.0 моль/л. Скорость реакции равна 1.2 . 10 -3 моль/(л . с) при [A] = 1.5 моль/л. Рассчитайте константу скорости и скорость реакции при [B] = 1.5 моль/л.

Решение. По закону действующих масс, в любой момент времени скорость реакции равна:

.

К моменту времени, когда [A] = 1.5 моль/л, прореагировало по 0.5 моль/л веществ A и B, поэтому [B] = 3 – 0.5 = 2.5 моль/л. Константа скорости равна:

л/(моль . с).

К моменту времени, когда [B] = 1.5 моль/л, прореагировало по 1.5 моль/л веществ A и B, поэтому [A] = 2 – 1.5 = 0.5 моль/л. Скорость реакции равна:

моль/(л . с).

ЗАДАЧИ

1-1. Как выражается скорость реакции синтеза аммиака 1/2 N2 + 3/2 H2 = NH3 через концентрации азота и водорода? (ответ)

1-2. Как изменится скорость реакции синтеза аммиака 1/2 N2 + 3/2 H2 = NH3, если уравнение реакции записать в виде N2 + 3H2 = 2NH3? (ответ)

1-3. Чему равен порядок элементарных реакций: а) Сl + H2 = HCl + H; б) 2NO + Cl2 = 2NOCl? (ответ)

1-4. Какие из перечисленных величин могут принимать а) отрицательные; б) дробные значения: скорость реакции, порядок реакции, молекулярность реакции, константа скорости, стехиометрический коэффициент? (ответ)

1-5. Зависит ли скорость реакции от концентрации продуктов реакции? (ответ)

1-6. Во сколько раз увеличится скорость газофазной элементарной реакции A = 2D при увеличении давления в 3 раза?(ответ)

1-7. Определите порядок реакции, если константа скорости имеет размерность л 2 /(моль 2 . с). (ответ)

1-8. Константа скорости газовой реакции 2-го порядка при 25 о С равна 10 3 л/(моль . с). Чему равна эта константа, если кинетическое уравнение выражено через давление в атмосферах?(ответ)

1-9. Для газофазной реакции n-го порядка nA B выразите скорость образования B через суммарное давление.(ответ)

1-10. Константы скорости прямой и обратной реакции равны 2.2 и 3.8 л/(моль . с). По какому из перечисленных ниже механизмов могут протекать эти реакции: а) A + B = D; б) A + B = 2D; в) A = B + D; г) 2A = B.(ответ)

1-11. Реакция разложения 2HI H2 + I2 имеет 2-й порядок с константой скорости k = 5.95 . 10 -6 л/(моль . с). Вычислите скорость реакции при давлении 1 атм и температуре 600 К. (ответ)

1-12. Скорость реакции 2-го порядка A + B D равна 2.7 . 10 -7 моль/(л . с) при концентрациях веществ A и B, соответственно, 3.0 . 10 -3 моль/л и 2.0 моль/л. Рассчитайте константу скорости.(ответ)

1-13. В реакции 2-го порядка A + B 2D начальные концентрации веществ A и B равны по 1.5 моль/л. Скорость реакции равна 2.0 . 10 -4 моль/(л . с) при [A] = 1.0 моль/л. Рассчитайте константу скорости и скорость реакции при [B] = 0.2 моль/л. (ответ)

1-14. В реакции 2-го порядка A + B 2D начальные концентрации веществ A и B равны, соответственно, 0.5 и 2.5 моль/л. Во сколько раз скорость реакции при [A] = 0.1 моль/л меньше начальной скорости? (ответ)

1-15. Скорость газофазной реакции описывается уравнением w = k . [A] 2 . [B]. При каком соотношении между концентрациями А и В начальная скорость реакции будет максимальна при фиксированном суммарном давлении? (ответ)

2. Кинетика простых реакций

В данном разделе мы составим на основе закона действующих масс и решим кинетические уравнения для необратимых реакций целого порядка.

Реакции 0-го порядка. Скорость этих реакций не зависит от концентрации:

,

где [A] — концентрация исходного вещества. Нулевой порядок встречается в гетерогенных и фотохимических реакциях.

Реакции 1-го порядка. В реакциях типа A B скорость прямо пропорциональна концентрации:

.

При решении кинетических уравнений часто используют следующие обозначения: начальная концентрация [A]0 = a, текущая концентрация [A] = ax(t), где x(t) — концентрация прореагировавшего вещества A. В этих обозначениях кинетическое уравнение для реакции 1-го порядка и его решение имеют вид:

.

Решение кинетического уравнения записывают и в другом виде, удобном для анализа порядка реакции:

.

Время, за которое распадается половина вещества A, называют периодом полураспада t 1/2. Он определяется уравнением x(t 1/2) = a/2 и равен

.

Реакции 2-го порядка. В реакциях типа A + B D + . скорость прямо пропорциональна произведению концентраций:

.

При решении этого уравнения различают два случая.

1) одинаковые начальные концентрации веществ A и B: a = b. Кинетическое уравнение имеет вид:

.

Решение этого уравнения записывают в различных формах:

.

Период полураспада веществ A и B одинаков и равен:

.

2) Начальные концентрации веществ A и B различны: a b. Кинетическое уравнение имеет вид:
.

Решение этого уравнения можно записать следующим образом:

.

Периоды полураспада веществ A и B различны: .

Реакции n-го порядка nA D + . Кинетическое уравнение имеет вид:

.

Решение кинетического уравнения:

. (2.1)

Период полураспада вещества A обратно пропорционален (n-1)-й степени начальной концентрации:

. (2.2)

Пример 2-1. Период полураспада радиоактивного изотопа 14 C — 5730 лет. При археологических раскопках было найдено дерево, содержание 14 C в котором составляет 72% от нормального. Каков возраст дерева?
Решение. Радиоактивный распад — реакция 1-го порядка. Константа скорости равна:

.

Время жизни дерева можно найти из решения кинетического уравнения с учетом того, что [A] = 0.72 . [A]0:

2720 лет.

Пример 2-2. Установлено, что реакция 2-го порядка (один реагент) завершается на 75% за 92 мин при исходной концентрации реагента 0.24 М. Какое время потребуется, чтобы при тех же условиях концентрация реагента достигла 0.16 М?
Решение. Запишем два раза решение кинетического уравнения для реакции 2-го порядка с одним реагентом:

,

где, по условию, a = 0.24 M, t1 = 92 мин, x1 = 0.75 . 0.24 = 0.18 M, x2 = 0.24 — 0.16 = 0.08 M. Поделим одно уравнение на другое:

= 15,3 мин.

Пример 2-3. Для элементарной реакции nA B обозначим период полураспада A через t 1/2, а время распада A на 75% — через t 3/4. Докажите, что отношение t 3/4 / t 1/2 не зависит от начальной концентрации, а определяется только порядком реакции n.Решение. Запишем два раза решение кинетического уравнения для реакции n-го порядка с одним реагентом:

и поделим одно выражение на другое. Постоянные величины k и a из обоих выражений сократятся, и мы получим:

.

Этот результат можно обобщить, доказав, что отношение времен, за которые степень превращения составит a и b , зависит только от порядка реакции:

.

ЗАДАЧИ

2-1. Пользуясь решением кинетического уравнения, докажите, что для реакций 1-го порядка время t x, за которое степень превращения исходного вещества достигает x, не зависит от начальной концентрации. (ответ)

2-2. Реакция первого порядка протекает на 30% за 7 мин. Через какое время реакция завершится на 99%? (ответ)

2-3. Период полураспада радиоактивного изотопа 137 Cs, который попал в атмосферу в результате Чернобыльской аварии, — 29.7 лет. Через какое время количество этого изотопа составит менее 1% от исходного? (ответ)

2-4. Период полураспада радиоактивного изотопа 90 Sr, который попадает в атмосферу при ядерных испытаниях, — 28.1 лет. Предположим, что организм новорожденного ребенка поглотил 1.00 мг этого изотопа. Сколько стронция останется в организме через а) 18 лет, б) 70 лет, если считать, что он не выводится из организма?(ответ)

2-5. Константа скорости для реакции первого порядка SO2Cl2 = SO2 + Cl2 равна 2.2 . 10 -5 с -1 при 320 о С. Какой процент SO2Cl2 разложится при выдерживании его в течение 2 ч при этой температуре?(ответ)

2-6. Константа скорости реакции 1-го порядка

2N2O5(г) 4NO2(г) + O2(г)

при 25 о С равна 3.38 . 10 -5 с -1 . Чему равен период полураспада N2O5? Чему будет равно давление в системе через а) 10 с, б) 10 мин, если начальное давление было равно 500 мм рт. ст. (ответ)

2-7. Реакцию первого порядка проводят с различными количествами исходного вещества. Пересекутся ли в одной точке на оси абсцисс касательные к начальным участкам кинетических кривых? Ответ поясните.(ответ)

2-8. Реакция первого порядка A 2B протекает в газовой фазе. Начальное давление равно p0 (B отсутствует). Найдите зависимость общего давления от времени. Через какое время давление увеличится в 1.5 раза по сравнению с первоначальным? Какова степень протекания реакции к этому времени? (ответ)

2-9. Реакция второго порядка 2A B протекает в газовой фазе. Начальное давление равно p0 (B отсутствует). Найдите зависимость общего давления от времени. Через какое время давление уменьшится в 1.5 раза по сравнению с первоначальным? Какова степень протекания реакции к этому времени? (ответ)

2-10. Вещество A смешали с веществами B и C в равных концентрациях 1 моль/л. Через 1000 с осталось 50% вещества А. Сколько вещества А останется через 2000 с, если реакция имеет: а) нулевой, б) первый, в) второй, в) третий общий порядок?(ответ)

2-11. Какая из реакций — первого, второго или третьего порядка — закончится быстрее, если начальные концентрации веществ равны 1 моль/л и все константы скорости, выраженные через моль/л и с, равны 1? (ответ)

CH3CH2NO2 + OH — H2O + CH3CHNO2

имеет второй порядок и константу скорости k = 39.1 л/(моль . мин) при 0 о С. Был приготовлен раствор, содержащий 0.004 М нитроэтана и 0.005 М NaOH. Через какое время прореагирует 90% нитроэтана? (ответ)

2-13. Константа скорости рекомбинации ионов H + и ФГ — (фенилглиоксинат) в молекулу НФГ при 298 К равна k = 10 11.59 л/(моль . с). Рассчитайте время, в течение которого реакция прошла на 99.999%, если исходные концентрации обоих ионов равны 0.001 моль/л. (ответ)

2-14. Скорость окисления бутанола-1 хлорноватистой кислотой не зависит от концентрации спирта и пропорциональна [HClO] 2 . За какое время реакция окисления при 298 К пройдет на 90%, если исходный раствор содержал 0.1 моль/л HClO и 1 моль/л спирта? Константа скорости реакции равна k = 24 л/(моль . мин). (ответ)

2-15. При определенной температуре 0.01 М раствор этилацетата омыляется 0.002 М раствором NaOH на 10% за 23 мин. Через сколько минут он будет омылен до такой же степени 0.005 М раствором KOH? Считайте, что данная реакция имеет второй порядок, а щелочи диссоциированы полностью.(ответ)

2-16. Реакция второго порядка A + B P проводится в растворе с начальными концентрациями [A]0 = 0.050 моль/л и [B]0 = 0.080 моль/л. Через 1 ч концентрация вещества А уменьшилась до 0.020 моль/л. Рассчитайте константу скорости и периоды полураспада обоих веществ. (ответ)

*2-17. Скорость автокаталитической реакции A P описывается кинетическим уравнением w = k . [A] . [P]. Решите это кинетическое уравнение и найдите зависимость степени превращения от времени. Начальные концентрации: [A]0 = a, [P]0 = p. (ответ)

*2-18. Автокаталитическая реакция A P описывается кинетическим уравнением: d[P]/dt = k[A] 2 [P]. Решите это уравнение при начальных концентрациях [A]0 = a и [P]0 = p. Рассчитайте время, при котором скорость реакции достигнет максимума. (ответ)

*2-19. Автокаталитическая реакция A P описывается кинетическим уравнением: d[P]/dt = k[A][P] 2 . Решите это уравнение при начальных концентрациях [A]0 = a и [P]0 = p. Рассчитайте время, при котором скорость реакции достигнет максимума. (ответ)

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

Порядком реакции порядком кинетического уравнения называется

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

2.1 СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ

2.1.1 Кинетическое уравнение химической реакции. Порядок реакции.

Одной из задач, стоящих перед химической кинетикой, является определение состава реакционной смеси (т.е. концентраций всех реагентов) в любой момент времени, для чего необходимо знать зависимость скорости реакции от концентраций. В общем случае, чем больше концентрации реагирующих веществ, тем больше скорость химической реакции. В основе химической кинетики лежит т. н. основной постулат химической кинетики :

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

Т. е. для реакции

(II.4)

Коэффициент пропорциональности k есть константа скорости химической реакции . Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л.

Зависимость скорости реакции от концентраций реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (II.4) соответственно x, y и z) есть частный порядок реакции по данному компоненту. Сумма показателей степени в кинетическом уравнении химической реакции (x + y + z) представляет собой общий порядок реакции . Следует подчеркнуть, что порядок реакции определяется только из экспериментальных данных и не связан со стехиометрическими коэффициентами при реагентах в уравнении реакции. Стехиометрическое уравнение реакции представляет собой уравнение материального баланса и никоим образом не может определять характера протекания этой реакции во времени.

В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим зависимость концентрации реагирующих веществ от времени для необратимых (односторонних) реакций нулевого, первого и второго порядков.

2.1.2 Реакции нулевого порядка

Для реакций нулевого порядка кинетическое уравнение имеет следующий вид:

(II.5)

Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ; это характерно для многих гетерогенных (идущих на поверхности раздела фаз) реакций в том случае, когда скорость диффузии реагентов к поверхности меньше скорости их химического превращения.

2.1.3 Реакции первого порядка

Рассмотрим зависимость от времени концентрации исходного вещества А для случая реакции первого порядка А ––> В. Реакции первого порядка характеризуются кинетическим уравнением вида (II.6). Подставим в него выражение (II.2):

(II.6)

(II.7)

После интегрирования выражения (II.7) получаем:

(II.8)

Константу интегрирования g определим из начальных условий: в момент времени t = 0 концентрация С равна начальной концентрации Со. Отсюда следует, что g = ln Со. Получаем:

(II.9)

Рис. 2.3 Зависимость логарифма концентрации от времени для реакций
первого порядка

Т.о., логарифм концентрации для реакции первого порядка линейно зависит от времени (рис. 2.3) и константа скорости численно равна тангенсу угла наклона прямой к оси времени.

(II.10)

Из уравнения (II.9) легко получить выражение для константы скорости односторонней реакции первого порядка:

(II.11)

Еще одной кинетической характеристикой реакции является период полупревращения t1/2 – время, за которое концентрация исходного вещества уменьшается вдвое по сравнению с исходной. Выразим t1/2 для реакции первого порядка, учитывая, что С = ½Со:

(II.12)

(II.13)

Как видно из полученного выражения, период полупревращения реакции первого порядка не зависит от начальной концентрации исходного вещества.

2.1.4 Реакции второго порядка

Для реакций второго порядка кинетическое уравнение имеет следующий вид:

(II.14)

(II.15)

Рассмотрим простейший случай, когда кинетическое уравнение имеет вид (II.14) или, что то же самое, в уравнении вида (II.15) концентрации исходных веществ одинаковы; уравнение (II.14) в этом случае можно переписать следующим образом:

(II.16)

После разделения переменных и интегрирования получаем:

(II.17)

Постоянную интегрирования g, как и в предыдущем случае, определим из начальных условий. Получим:

(II.18)

Т.о., для реакций второго порядка, имеющих кинетическое уравнение вида (II.14), характерна линейная зависимость обратной концентрации от времени (рис. 2.4) и константа скорости равна тангенсу угла наклона прямой к оси времени:

(II.19)

(II.20)

Рис. 2.4 Зависимость обратной концентрации от времени для реакций
второго порядка

Если начальные концентрации реагирующих веществ Cо,А и Cо,В различны, то константу скорости реакции находят интегрированием уравнения (II.21), в котором CА и CВ – концентрации реагирующих веществ в момент времени t от начала реакции:

(II.21)

В этом случае для константы скорости получаем выражение

(II.22)

Порядок химической реакции есть формально-кинетическое понятие, физический смысл которого для элементарных (одностадийных) реакций заключается в следующем: порядок реакции равен числу одновременно изменяющихся концентраций. В случае элементарных реакций порядок реакции может быть равен сумме коэффициентов в стехиометрическом уравнении реакции; однако в общем случае порядок реакции определяется только из экспериментальных данных и зависит от условий проведения реакции. Рассмотрим в качестве примера элементарную реакцию гидролиза этилового эфира уксусной кислоты (этилацетата), кинетика которой изучается в лабораторном практикуме по физической химии:

Если проводить эту реакцию при близких концентрациях этилацетата и воды, то общий порядок реакции равен двум и кинетическое уравнение имеет следующий вид:

(II.23)

При проведении этой же реакции в условиях большого избытка одного из реагентов (воды или этилацетата) концентрация вещества, находящегося в избытке, практически не изменяется и может быть включена в константу скорости; кинетическое уравнение для двух возможных случаев принимает следующий вид:

(II.24)

(II.25)

2) Избыток этилацетата:

(II.26)

(II.27)

В этих случаях мы имеем дело с т.н. реакцией псевдопервого порядка . Проведение реакции при большом избытке одного из исходных веществ используется для определения частных порядков реакции.


Copyright © С. И. Левченков, 1996 — 2005.


источники:

http://www.chem.msu.su/rus/teaching/eremin/1-2.html

http://physchem.chimfak.sfedu.ru/Source/PCC/Kinetics_2.htm