Последовательные приближения дифференциальные уравнения онлайн

Метод итераций

Правила ввода функции

  1. Примеры
    ≡ x^2/(1+x)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

На рис.1а, 1б в окрестности корня |φ′(x)| 1, то процесс итерации может быть расходящимся (см. рис.2).

Достаточные условия сходимости метода итерации

Процесс нахождения нулей функции методом итераций состоит из следующих этапов:

  1. Получить шаблон с омощью этого сервиса.
  2. Уточнить интервалы в ячейках B2 , B3 .
  3. Копировать строки итераций до требуемой точности (столбец D ).

Примечание: столбец A — номер итерации, столбец B — корень уравнения X , столбец C — значение функции F(X) , столбец D — точность eps .

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Метод последовательных приближений решения дифференциального уравнения

Пусть требуется найти решение дифференциального уравнения

Будем предполагать, что в некотором прямоугольнике для уравнения (1) выполнены условия а) и б) теоремы существования и единственности решения задачи (1)-(2).

Решение задачи (1)-(2) может быть найдено методом последовательных приближений , который состоит в следующем.

Строим последовательность функций, определяемых рекуррентными соотношениями

В качестве нулевого приближения можно взять любую функцию, непрерывную в окрестности точки , в частности — начальное значение Коши (2). Можно доказать, что при сделанных предположениях относительно уравнения (1) последовательные приближения сходятся к точному решению уравнения (1), удовлетворяющему условию (2), в некотором интервале , где

Оценка погрешности, получаемой при замене точного решения n-м приближением , даётся неравенством

где . Применяя метод последовательных приближений, следует остановиться на таком , для которого не превосходит допустимой погрешности.

Пример 1. Методом последовательных приближений найти решение уравнения , удовлетворяющее начальному условию .

Решение. Очевидно, что для данного уравнения на всей плоскости выполнены условия теоремы существования и единственности решения задачи Коши. Строим последовательность функций, определяемых соотношениями (3), приняв за нулевое приближение :

Ясно, что при . Непосредственной проверкой убеждаемся, что функция решает поставленную задачу Коши.

Пример 2. Методом последовательных приближений найти приближенное решение уравнения , удовлетворяющее начальному условию в прямоугольнике

Решение. Имеем , т. е. . За берем меньшее из чисел , т. е. . Последовательные приближения согласно (4) будут сходится в интервале . Составляем их

Абсолютная погрешность третьего приближения не превосходит величины

Замечание. Функция должна удовлетворять всем условиям теоремы существования и единственности решения задачи Коши.

Следующий пример показывает, что одной непрерывности функции недостаточно для сходимости последовательных приближений.

Пусть функция определена следующим образом:

На множестве , функция непрерывна и ограничена постоянной . Для начальной точки последовательные приближения при имеют вид:

Поэтому последовательность для каждого не имеет, предела, т. е. последовательные приближения не сходятся. Заметим также, что ни одна из сходящихся подпоследовательностей и не сходится к решению, поскольку

Если же последовательные приближения сходятся, то полученное решение может оказаться неединственным , как показывает следующий пример: .

Возьмем начальное условие ; тогда

Беря в качестве нулевого приближения функцию , будем иметь

так что все последовательные приближения равны нулю и поэтому они сходятся к функции, тождественно равной нулю. С другой стороны, функция представляет собой также решение этой задачи, существующее на полупрямой .


источники:

http://mathdf.com/dif/ru/

http://mathhelpplanet.com/static.php?p=metod-posledovatelnyh-priblizheniy