Построение графика линейного уравнения видеоурок

График линейной функции, его свойства и формулы

О чем эта статья:

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

если х = 0, то у = -2;

если х = 2, то у = -1;

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

Таким образом, нам надо построить график функции y = -4x — 10

Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Вычтем из второго уравнения системы первое, и получим k = 3.

Подставим значение k в первое уравнение системы, и получим b = -2.

Ответ: уравнение прямой y = 3x — 2.

Урок «Уравнение с двумя переменными и его график»

Краткое описание документа:

Видеоурок «Уравнение с двумя переменными и его график» знакомит учеников с понятием уравнения с двумя переменными, его решением, дает представление о графике уравнения с двумя переменными, его построении. Задача видеоурока – наглядно представить учебный материал по данной теме, облегчая выполнение задач учителя на уроке и давая возможность ему более эффективно использовать время урока.

Возможности видеоурока больше, чем любого другого наглядного пособия. Возможность использовать анимационные эффекты, заменить учителя в демонстрации построения графиков, чертежей, выполнение голосового сопровождения позволяет повысить эффективность урока, более рационально распределять время, удерживать внимание учеников на изучаемом материале.

Видеоурок начинается с представления темы. Ученикам представляются примеры уравнений с двумя переменными: 3х+4у=16, х 2 =9-у 2 , ху-8=0. Далее дается представление о решениях уравнения с двумя переменными. Демонстрируется подстановка значений переменных х=4 и у=1, которые превращают уравнение 3х+4у=16 в справедливое равенство. После объяснения сути решения уравнения, вводится понятие решения уравнения, которое в данном случае представляет собой пару чисел (4;1), в котором на первом месте представлено значение переменной х, а на втором – значение переменной у. Далее для запоминания учениками на экран выведено определение, что такое решение уравнения, которым называется пара значений для переменных, обращающая уравнение в верное равенство.

Уточняется особенность уравнения, имеющего две переменные — в большинстве случаев они имеют бесконечное множество решений. Вводится понятие равносильных уравнений, представляющих собой уравнения, имеющие одинаковое множество решений. Отмечается одинаковый способ определения степени целого уравнения, имеющего две переменные, и целого уравнения, имеющего одну переменную. Также уточняется, что уравнение, содержащее две переменные, у которого в левой части – многочлен, а в правой – 0, имеет степень, равной степени данного многочлена. Способом определения степени уравнения остается замена его равносильным уравнением таким образом, чтобы в левой части уравнения остался многочлен стандартного вида, а в левой – нуль. Приведен пример такой замены: отмечается, что уравнения (х 2 -у) 2 =х 4 -1 и -2х 2 у+у 2 +1=0 равносильны. После приведения уравнения к виду, когда в левой части остается многочлен стандартного вида, можно установить, что данное уравнение — третьей степени.

Далее рассматриваются особенности графика уравнения, имеющего две переменные. В представленном определении графиком некоторого уравнения, имеющего две переменные, является множество точек на координатной плоскости, подставив координаты которых, можно получить верное равенство. Ученикам напоминается вид графиков, уже изученных ранее и представляющих собой график уравнения с двумя переменными. Это прямая, представляющая собой график линейного уравнения ax+by=c, где a≠0 и b≠0, а также парабола – график уравнения у=х 2 , гипербола – график ух=15.

Ученикам демонстрируется построение графика функции x 2 +y 2 =r 2 , где r – произвольное положительное число. Окружность, являющаяся графиком данного уравнения, представлена на экране. Доказывается, что любая точка окружности будет удовлетворять данному уравнению. Для этого отмечаем произвольную точку В(х;у). Длина опущенного на ось абсцисс перпендикуляра равна модулю ординаты данной точки, а отрезок, проведенный из данной точки в начало координат – радиусу. Длина отрезка от начала координат до точки пересечения перпендикуляра с осью абсцисс равна модулю абсциссы. Из полученного прямоугольного треугольника АОВ имеем равенство: АО 2 +АВ 2 =ВО 2 , то есть |x| 2 +|y| 2 =r 2 . Это равенство также справедливо без знака модуля.

Чтобы убедиться, что уравнение верно в любом положении В(х;у) на окружности, предлагается рассмотреть точку В, которая лежит в точке пересечения окружности с осью абсцисс. Отмечается, что в этом случае одна координата точкиу равняется радиусу, а вторая – нуль. Уравнение x 2 +y 2 =r 2 превращается в 0 2 +r 2 =r 2 , поэтому равенство также справедливо. При этом для всех точек, которые не лежат в области определения, их координаты не удовлетворяют уравнению окружности x 2 +y 2 =r 2 . Примеры таких точек отмечены на координатной плоскости. Общий вывод из рассмотренного построения следует, что уравнение окружности в записи х 2 +у 2 =r 2 верно для случаев, когда точки А(х;у) принадлежат области определения φ, О(0;0) – центр окружности, а r — радиус.

Далее рассматривается, как уравнение окружности зависит от положения ее центра. Отмечается, что при переносе центра на |а| единиц вправо или влево параллельно х, а также на |b| единиц вверх или вниз, параллельно у, получается окружность того же радиуса, только с центром в точке с новыми координатами О(a;b). Уравнением такой окружности будет (x-a) 2 +(y-b) 2 =r 2 .

Видеоурок «Уравнение с двумя переменными и его график» может быть использован как наглядное пособие на уроке алгебры по данной теме или заменить объяснение учителя по теме. Также данный материал может быть полезен при дистанционном обучении, поможет освоить тему ученикам самостоятельно.


источники:

http://urokimatematiki.ru/urok-uravnenie-s-dvumya-peremennimi-i-ego-grafik-663.html